Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is It Ripe?

16.05.2012
Carbon nanotube-based ethylene sensor establishes fruit ripeness

The term ethylene (ethene) generally brings to mind polyethylene plastics, not fruit. However, ethylene is more than just a feedstock for chemical industry, it is also the smallest plant hormone, and it controls physiological processes, such as the ripening of fruit, seed germination, and the blooming and wilting of blossoms.

In the journal Angewandte Chemie, American researchers have now introduced a highly sensitive ethylene sensor that could be used to determine the ripeness of fruit.

The ripening process of many fruits is triggered when ethylene binds to a specific receptor. Bananas, for example, are usually unripe when they are harvested. They are transported under a nitrogen atmosphere to stop the ripening process and are then exposed to ethylene gas in a ripening facility before delivery. However, they must not be ripened too much because bananas become “overripe” very fast. It is thus important to precisely control the ethylene concentration in storage facilities. It is also interesting to know how much ethylene fruits release at any given point in their development because this could help determine the ideal time for harvest.

As a small, nonpolar molecule, ethylene (C2H4) is difficult to detect. Conventional methods are mainly based on expensive, complex instruments that are not well suited for use in the field or in an orchard. Timothy M. Swager and his team at the Massachusetts Institute of Technology (MIT) in Cambridge (USA) have now developed a portable sensor that can reliably measure tiny concentrations of ethylene, such as those released when fruit ripens. Their device is also easy and inexpensive to produce.

The sensory element consists of a small glass plate with two gold electrodes. A mixture of single-walled carbon nanotubes and a special copper complex is deposited between the electrodes. The copper complexes bind tightly to the carbon nanotubes. When the sensor comes into contact with ethylene, the ethylene binds to the copper complex, weakening the bond between the copper complex and the carbon nanotube. The electronic properties of carbon nanotubes are very sensitive to the strength of their interaction with the copper complexes. Their electrical resistance changes in relation to the ethylene concentration.

The researchers placed different fruit in an airtight chamber and allowed nitrogen to flow through the chamber and over the sensor. This made it possible for them to compare the ethylene emissions of different fruit and to follow the amount of ethylene reduced by a single fruit as it ripened. This revealed a clear ethylene peak during storage of fruits that ripen after harvest, such as bananas, pears, and avocados. The maximum is reached when the fruit is ripe. In contrast, fruit that do not ripen after harvest, such as oranges, release uniformly low amounts of ethylene.

About the Author
Timothy M. Swager is the John D. MacArthur Professor of Chemistry at the Massachusetts Institute of Technology. His research is at the interface of organic chemistry and electronic materials and his previous inventions have created commercial sniffers for explosives that are widely used by the US military and are used for liquids screening in US airports.
Author: Timothy M. Swager, Massachusetts Institute of Technology, Cambridge (USA), http://web.mit.edu/tswager/www/index.html
Title: Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201042

Timothy M. Swager | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://web.mit.edu/tswager/www/index.html

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>