Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIKEN chooses Helicos single molecule sequencing for global map of human promoters

08.12.2010
Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Joint research by RIKEN and Helicos BioSciences Corporation has played a key role in this project in adapting the Cap Analysis of Gene Expression (CAGE) technique, originally developed by RIKEN, to the HeliscopeTM single molecule sequencer. The use of HeliscopeTM for CAGE completely avoids PCR amplification biases, is quantitative over 5 orders of magnitude, is highly reproducible and can be carried out on as little as 100ng of total RNA.

The FANTOM project is the brainchild of Yoshihide Hayashizaki, who launched the first phase of the project in 2000. The cDNA encyclopedia of mouse full-length cDNAs generated in the FANTOM1, 2 and 3 projects remains to this day the largest collection of mammalian full-length cDNAs. FANTOM3 provided insights into non-coding RNAs and sense-antisense regulation. It also introduced the CAGE technique, developed by Piero Carninci, which generates sequence tags from the 5’ ends of capped RNAs.

In FANTOM4, CAGE was applied to an acute myeloid leukemia cell line undergoing monocytic differentiation. Using CAGE and transcription factor binding site predictions, a transcriptional regulatory model was generated which identified the key transcription factors involved in monocytic differentiation. FANTOM5 takes this one huge leap further by trying to generate transcriptional regulatory models to define every human cell type.

Motivating the project is the idea that to build a full understanding of transcriptional regulation in a human system, we need to collect as large a set of diverse cellular states as possible. Different cellular states will express different subsets of genes, which in turn must be regulated by different combinations of transcription factors. While a large collection of human primary cell types has already been amassed for the project, many more are still needed. Potential collaborators working on rare cell types are invited to contact Alistair Forrest, who is co-coordinating sample collection for the project.

For more information, please contact:
Dr. Yoshihide Hayashizaki
Director, RIKEN Omics Science Center
General Organizer, FANTOM5 Project
The FANTOM5 headquarter:
Alistair Forrest, Jun Kawai, Piero Carninci, Hideya Kawaji, Carsten Daub, Harukazu Suzuki
RIKEN Omics Science Center
TEL: +81-45-503-9222 FAX: +81-45-503-9216
Email: fantom5_enquiries@gsc.riken.jp
About RIKEN
RIKEN is a Japanese research institute that carries out high-level experimental and research work in a wide range of fields, including physics, chemistry, medical science, biology, and engineering, covering the entire range from basic research to practical applications. RIKEN was first organized in 1917 as a private research foundation and was reorganized in 2003 as an independent administrative institution under the Ministry of Education, Culture, Sports, Science and Technology.

RIKEN Omics Science Center is one of 12 research centers in RIKEN and its focus is on developing genome-wide technologies and applications thereof.

gro-pr | Research asia research news
Further information:
http://www.osc.riken.jp/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>