Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIKEN chooses Helicos single molecule sequencing for global map of human promoters

08.12.2010
Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Joint research by RIKEN and Helicos BioSciences Corporation has played a key role in this project in adapting the Cap Analysis of Gene Expression (CAGE) technique, originally developed by RIKEN, to the HeliscopeTM single molecule sequencer. The use of HeliscopeTM for CAGE completely avoids PCR amplification biases, is quantitative over 5 orders of magnitude, is highly reproducible and can be carried out on as little as 100ng of total RNA.

The FANTOM project is the brainchild of Yoshihide Hayashizaki, who launched the first phase of the project in 2000. The cDNA encyclopedia of mouse full-length cDNAs generated in the FANTOM1, 2 and 3 projects remains to this day the largest collection of mammalian full-length cDNAs. FANTOM3 provided insights into non-coding RNAs and sense-antisense regulation. It also introduced the CAGE technique, developed by Piero Carninci, which generates sequence tags from the 5’ ends of capped RNAs.

In FANTOM4, CAGE was applied to an acute myeloid leukemia cell line undergoing monocytic differentiation. Using CAGE and transcription factor binding site predictions, a transcriptional regulatory model was generated which identified the key transcription factors involved in monocytic differentiation. FANTOM5 takes this one huge leap further by trying to generate transcriptional regulatory models to define every human cell type.

Motivating the project is the idea that to build a full understanding of transcriptional regulation in a human system, we need to collect as large a set of diverse cellular states as possible. Different cellular states will express different subsets of genes, which in turn must be regulated by different combinations of transcription factors. While a large collection of human primary cell types has already been amassed for the project, many more are still needed. Potential collaborators working on rare cell types are invited to contact Alistair Forrest, who is co-coordinating sample collection for the project.

For more information, please contact:
Dr. Yoshihide Hayashizaki
Director, RIKEN Omics Science Center
General Organizer, FANTOM5 Project
The FANTOM5 headquarter:
Alistair Forrest, Jun Kawai, Piero Carninci, Hideya Kawaji, Carsten Daub, Harukazu Suzuki
RIKEN Omics Science Center
TEL: +81-45-503-9222 FAX: +81-45-503-9216
Email: fantom5_enquiries@gsc.riken.jp
About RIKEN
RIKEN is a Japanese research institute that carries out high-level experimental and research work in a wide range of fields, including physics, chemistry, medical science, biology, and engineering, covering the entire range from basic research to practical applications. RIKEN was first organized in 1917 as a private research foundation and was reorganized in 2003 as an independent administrative institution under the Ministry of Education, Culture, Sports, Science and Technology.

RIKEN Omics Science Center is one of 12 research centers in RIKEN and its focus is on developing genome-wide technologies and applications thereof.

gro-pr | Research asia research news
Further information:
http://www.osc.riken.jp/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>