Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RIKEN chooses Helicos single molecule sequencing for global map of human promoters

Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Joint research by RIKEN and Helicos BioSciences Corporation has played a key role in this project in adapting the Cap Analysis of Gene Expression (CAGE) technique, originally developed by RIKEN, to the HeliscopeTM single molecule sequencer. The use of HeliscopeTM for CAGE completely avoids PCR amplification biases, is quantitative over 5 orders of magnitude, is highly reproducible and can be carried out on as little as 100ng of total RNA.

The FANTOM project is the brainchild of Yoshihide Hayashizaki, who launched the first phase of the project in 2000. The cDNA encyclopedia of mouse full-length cDNAs generated in the FANTOM1, 2 and 3 projects remains to this day the largest collection of mammalian full-length cDNAs. FANTOM3 provided insights into non-coding RNAs and sense-antisense regulation. It also introduced the CAGE technique, developed by Piero Carninci, which generates sequence tags from the 5’ ends of capped RNAs.

In FANTOM4, CAGE was applied to an acute myeloid leukemia cell line undergoing monocytic differentiation. Using CAGE and transcription factor binding site predictions, a transcriptional regulatory model was generated which identified the key transcription factors involved in monocytic differentiation. FANTOM5 takes this one huge leap further by trying to generate transcriptional regulatory models to define every human cell type.

Motivating the project is the idea that to build a full understanding of transcriptional regulation in a human system, we need to collect as large a set of diverse cellular states as possible. Different cellular states will express different subsets of genes, which in turn must be regulated by different combinations of transcription factors. While a large collection of human primary cell types has already been amassed for the project, many more are still needed. Potential collaborators working on rare cell types are invited to contact Alistair Forrest, who is co-coordinating sample collection for the project.

For more information, please contact:
Dr. Yoshihide Hayashizaki
Director, RIKEN Omics Science Center
General Organizer, FANTOM5 Project
The FANTOM5 headquarter:
Alistair Forrest, Jun Kawai, Piero Carninci, Hideya Kawaji, Carsten Daub, Harukazu Suzuki
RIKEN Omics Science Center
TEL: +81-45-503-9222 FAX: +81-45-503-9216
RIKEN is a Japanese research institute that carries out high-level experimental and research work in a wide range of fields, including physics, chemistry, medical science, biology, and engineering, covering the entire range from basic research to practical applications. RIKEN was first organized in 1917 as a private research foundation and was reorganized in 2003 as an independent administrative institution under the Ministry of Education, Culture, Sports, Science and Technology.

RIKEN Omics Science Center is one of 12 research centers in RIKEN and its focus is on developing genome-wide technologies and applications thereof.

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>