Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIKEN BioResource Center to provide seeds of model cereal plant

05.04.2013
Seeds of the model cereal plant Brachypodium distachyon are now available at the RIKEN BioResource Center (BRC) in Japan, the second bioresource facility to provide seeds of this important model plant to the international scientific community.
Brachypodium distachyon belongs to the Poaceae family of monocot plants, which comprises temperate grasses and cereals and constitutes one of the most economically important plant families in the modern world. It is the first of the grass subfamily Pooideae to have a sequenced genome and it is widely used as a model plant for structural and functional genomic studies of grasses and cereals.

The seeds made available at BRC are of the Bd21 line, the standard line used in the sequencing project. In addition to the seeds, BRC will provide the scientific community with the technology needed for the cultivation and genetic alteration of Bd21.

“The BRC Brachypodium distachyon seed bank is the first of the kind in Asia. Our Bd21 seeds will be of particular interest to Asian scientists who can use it to generate transgenic plants and study monocot genes of agronomic interest.” Explains Dr. Kobayashi, Head of the Experimental Plant Division.

The Bd21 Brachypodium distachyon line is an important addition to BRC’s wide variety of bioresources, which already include human specimens, mice, the model plant Arabidopsis thaliana, cell lines, genes and microorganisms.

Since its establishment in 2001, the RIKEN BioResource Center has acted as a core bioresource facility for researchers through the collection, preservation and distribution of bioresources. Through these activities, the BRC supports studies in a broad range of fields, from basic research to the treatment of disease, health promotion, food production and environmental conservation.

The model cereal plant Brachypodium distachyon

http://www.riken.jp/en/pr/press/2013/20130405_2/

| alfa
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>