Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rigid connections: Molecular basis of age-related memory loss explained

22.07.2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information.

However, as we are getting older, our ability to learn and remember new things declines. A team of scientists around Associate Prof Dr Antonio Del Sol Mesa from the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg and Dr Ronald van Kesteren of the VU University Amsterdam have identified the molecular mechanisms of this cognitive decline using latest high-throughput proteomics and statistical methods.


As we are getting older, our ability to learn and remember new things declines

(c) Fotolia

The results were published this week in the prestigious scientific journal “Molecular and Cellular Proteomics” (doi:.10.1074/mcp.M113.032086).

Brain cells undergo chemical and structural changes, when information is written into our memory or recalled afterwards. Particularly, the number and the strength of connections between nerve cells, the so-called synapses, changes. To investigate why learning becomes more difficult even during healthy ageing, the scientists looked at the molecular composition of brain connections in healthy mice of 20 to 100 weeks of age.

This corresponds to a period from puberty until retirement in humans. "Amazingly, there was only one group of four proteins of the so-called extracellular matrix which increased strongly with age. The rest stayed more or less the same," says Prof Dr Antonio del Sol Mesa from the Luxembourg Centre for Systems Biomedicine.

The extracellular matrix is a mesh right at the connections between brain cells. A healthy amount of these proteins ensures a balance between stability and flexibility of synapses and is vital for learning and memory. "An increase of these proteins with age makes the connections between brain cells more rigid which lowers their ability to adapt to new situations. Learning gets difficult, memory slows down," Dr Ronald van Kesteren of the VU University Amsterdam elaborates.

In addition, the researchers not only looked at the individual molecules but also analysed the whole picture using a systems biology approach. Here they described the interplay between molecules as networks that together tightly control the amount of individual molecules and their interactions.

“A healthy network keeps all molecules in the right level for proper functioning. In older mice we found, however, that the overall molecular composition is more variable compared to younger animals. This shows that the network is losing its control and can be more easily disturbed when we age,” Prof Dr Antonio del Sol Mesa further explains. According to the researchers this makes the brain more susceptible to diseases.

Hence, this insight into the normal aging process could also help in the future to better understand complex neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Chemical compounds that modulate the extracellular matrix might be promising new treatments for learning disorders and memory loss.

Weitere Informationen:

http://www.mcponline.org/content/early/2014/07/19/mcp.M113.032086.full.pdf+html - LInk to the scientific article
http://www.uni.lu/lcsb - homepage to the Luxembourg Centre for Systems Biomedicine

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: Molecular Parkinson's age-related diseases healthy proteins synapses

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

How wind sculpted Earth's largest dust deposit

02.09.2015 | Earth Sciences

Risk of financial crisis higher than previously estimated

02.09.2015 | Studies and Analyses

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>