Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rigid connections: Molecular basis of age-related memory loss explained

22.07.2014

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information.

However, as we are getting older, our ability to learn and remember new things declines. A team of scientists around Associate Prof Dr Antonio Del Sol Mesa from the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg and Dr Ronald van Kesteren of the VU University Amsterdam have identified the molecular mechanisms of this cognitive decline using latest high-throughput proteomics and statistical methods.


As we are getting older, our ability to learn and remember new things declines

(c) Fotolia

The results were published this week in the prestigious scientific journal “Molecular and Cellular Proteomics” (doi:.10.1074/mcp.M113.032086).

Brain cells undergo chemical and structural changes, when information is written into our memory or recalled afterwards. Particularly, the number and the strength of connections between nerve cells, the so-called synapses, changes. To investigate why learning becomes more difficult even during healthy ageing, the scientists looked at the molecular composition of brain connections in healthy mice of 20 to 100 weeks of age.

This corresponds to a period from puberty until retirement in humans. "Amazingly, there was only one group of four proteins of the so-called extracellular matrix which increased strongly with age. The rest stayed more or less the same," says Prof Dr Antonio del Sol Mesa from the Luxembourg Centre for Systems Biomedicine.

The extracellular matrix is a mesh right at the connections between brain cells. A healthy amount of these proteins ensures a balance between stability and flexibility of synapses and is vital for learning and memory. "An increase of these proteins with age makes the connections between brain cells more rigid which lowers their ability to adapt to new situations. Learning gets difficult, memory slows down," Dr Ronald van Kesteren of the VU University Amsterdam elaborates.

In addition, the researchers not only looked at the individual molecules but also analysed the whole picture using a systems biology approach. Here they described the interplay between molecules as networks that together tightly control the amount of individual molecules and their interactions.

“A healthy network keeps all molecules in the right level for proper functioning. In older mice we found, however, that the overall molecular composition is more variable compared to younger animals. This shows that the network is losing its control and can be more easily disturbed when we age,” Prof Dr Antonio del Sol Mesa further explains. According to the researchers this makes the brain more susceptible to diseases.

Hence, this insight into the normal aging process could also help in the future to better understand complex neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Chemical compounds that modulate the extracellular matrix might be promising new treatments for learning disorders and memory loss.

Weitere Informationen:

http://www.mcponline.org/content/early/2014/07/19/mcp.M113.032086.full.pdf+html - LInk to the scientific article
http://www.uni.lu/lcsb - homepage to the Luxembourg Centre for Systems Biomedicine

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: Molecular Parkinson's age-related diseases healthy proteins synapses

More articles from Life Sciences:

nachricht Faster detection of pathogens in the lungs
24.06.2016 | Universität Zürich

nachricht How yeast cells regulate their fat balance
23.06.2016 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>