Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right time, right place

27.06.2014

To orient ourselves in space, our brain generates an internal coordinate system. Heidelberg researchers now refute the current model on how nerve cells generate this mental map.

The food pellet must be further away—a mouse is foraging for food. To estimate distances and to orient itself in space, the brain forms an internal spatial map. So-called grid neurons take on an important role in this process. They fire when the mouse happens to be at decisive positions.


Grid neurons are essential for space orientation. They fire when the mouse happens to be at decisive positions. Seen from above, the activity pattern of a cell forms a hexagonal pattern in space.

Christina Buetfering, 2014

From a bird's perspective, the activity pattern of a grid cell forms a hexagonal pattern in space—very reminiscent of a coordinate system on a map (see figure). But how is this abstract activity pattern generated that is not based on sensory input from the environment?

To find answers, researchers investigated neuronal connections by means of theoretical models. The currently most promising model is now refuted by scientists from the Bernstein Center Heidelberg/Mannheim and the Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and The German Cancer Research Center (DKFZ), who put the model to test in animal experiments.

"In our study, we measured the nerve cell activity in freely moving mice," explains Christina Buetfering, first author of the study. "We were interested in grid cells as well as nerve cells that interconnect the grid cells: so-called interneurons".

The crucial trick: the activity of interneurons could be selectively switched on and off by light signals in genetically modified mice. While the mice moved around during foraging, the researchers activated the cells now and then. This helped them to identify and closely observe the interneurons in the measured data stream. Also, they were able to analyze how grid cells responded to the activity of interneurons—giving a hint on how the neurons must be connected.

The scientists discovered that interneurons show no spatial activity patterns like grid cells do. In addition, individual interneurons are not exclusively connected to grid cells with similar activity patterns. Instead, they get their input signals from very different grid cells and send their output information to diverse nerve cells.

"With these results we were able to refute two basic predictions of the current theoretical network model," Buetfering discusses. "The model assumes that for generating the inner mental map, grid cells of the same spatial orientation must be very closely connected—which was thought to be realized via spatially active interneurons."

However, interneurons seem to have a different main task. The cells send inhibitory signals to quite different neurons in their environment. Therefore, they possibly rather take over a modulating function by ensuring a balance between excitation and inhibition in the brain area during excessive nerve cell activity.

In this way they could prevent epileptic seizures. How grid cells manage to fire at the right time at the right place—thereby generating the abstract mental coordinate system—has, once again, become more mysterious.

The Bernstein Center Heidelberg/Mannheim is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Hannah Monyer
Clinical Neurobiology (A230)
German Cancer Research Center
Im Neuenheimer Feld 280
69120 Heidelberg
Tel: +49 (0)6221 42 3100
Email: h.monyer@dkfz.de

Original publication:
C. Buetfering, K. Allen & H. Monyer (2014): Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.3696

Weitere Informationen:

http://www.dkfz.de/de/klinische-neurobiologie Lab Hannah Monyer
http://www.uni-heidelberg.de Heidelberg University
http://www.klinikum.uni-heidelberg.de Heidelberg University Hospital
http://www.dkfz.de German Cancer Research Center
http://www.bccn-heidelberg-mannheim.de Bernstein Center Heidelberg/Mannheim
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Cancer Computational Neurobiology Neuroscience activity crucial foraging neurons spatial

More articles from Life Sciences:

nachricht Protein Shake-Up
27.03.2015 | Oak Ridge National Laboratory

nachricht How did the chicken cross the sea?
27.03.2015 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>