Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right time, right place

27.06.2014

To orient ourselves in space, our brain generates an internal coordinate system. Heidelberg researchers now refute the current model on how nerve cells generate this mental map.

The food pellet must be further away—a mouse is foraging for food. To estimate distances and to orient itself in space, the brain forms an internal spatial map. So-called grid neurons take on an important role in this process. They fire when the mouse happens to be at decisive positions.


Grid neurons are essential for space orientation. They fire when the mouse happens to be at decisive positions. Seen from above, the activity pattern of a cell forms a hexagonal pattern in space.

Christina Buetfering, 2014

From a bird's perspective, the activity pattern of a grid cell forms a hexagonal pattern in space—very reminiscent of a coordinate system on a map (see figure). But how is this abstract activity pattern generated that is not based on sensory input from the environment?

To find answers, researchers investigated neuronal connections by means of theoretical models. The currently most promising model is now refuted by scientists from the Bernstein Center Heidelberg/Mannheim and the Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and The German Cancer Research Center (DKFZ), who put the model to test in animal experiments.

"In our study, we measured the nerve cell activity in freely moving mice," explains Christina Buetfering, first author of the study. "We were interested in grid cells as well as nerve cells that interconnect the grid cells: so-called interneurons".

The crucial trick: the activity of interneurons could be selectively switched on and off by light signals in genetically modified mice. While the mice moved around during foraging, the researchers activated the cells now and then. This helped them to identify and closely observe the interneurons in the measured data stream. Also, they were able to analyze how grid cells responded to the activity of interneurons—giving a hint on how the neurons must be connected.

The scientists discovered that interneurons show no spatial activity patterns like grid cells do. In addition, individual interneurons are not exclusively connected to grid cells with similar activity patterns. Instead, they get their input signals from very different grid cells and send their output information to diverse nerve cells.

"With these results we were able to refute two basic predictions of the current theoretical network model," Buetfering discusses. "The model assumes that for generating the inner mental map, grid cells of the same spatial orientation must be very closely connected—which was thought to be realized via spatially active interneurons."

However, interneurons seem to have a different main task. The cells send inhibitory signals to quite different neurons in their environment. Therefore, they possibly rather take over a modulating function by ensuring a balance between excitation and inhibition in the brain area during excessive nerve cell activity.

In this way they could prevent epileptic seizures. How grid cells manage to fire at the right time at the right place—thereby generating the abstract mental coordinate system—has, once again, become more mysterious.

The Bernstein Center Heidelberg/Mannheim is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Hannah Monyer
Clinical Neurobiology (A230)
German Cancer Research Center
Im Neuenheimer Feld 280
69120 Heidelberg
Tel: +49 (0)6221 42 3100
Email: h.monyer@dkfz.de

Original publication:
C. Buetfering, K. Allen & H. Monyer (2014): Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.3696

Weitere Informationen:

http://www.dkfz.de/de/klinische-neurobiologie Lab Hannah Monyer
http://www.uni-heidelberg.de Heidelberg University
http://www.klinikum.uni-heidelberg.de Heidelberg University Hospital
http://www.dkfz.de German Cancer Research Center
http://www.bccn-heidelberg-mannheim.de Bernstein Center Heidelberg/Mannheim
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Cancer Computational Neurobiology Neuroscience activity crucial foraging neurons spatial

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>