Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right time, right place

27.06.2014

To orient ourselves in space, our brain generates an internal coordinate system. Heidelberg researchers now refute the current model on how nerve cells generate this mental map.

The food pellet must be further away—a mouse is foraging for food. To estimate distances and to orient itself in space, the brain forms an internal spatial map. So-called grid neurons take on an important role in this process. They fire when the mouse happens to be at decisive positions.


Grid neurons are essential for space orientation. They fire when the mouse happens to be at decisive positions. Seen from above, the activity pattern of a cell forms a hexagonal pattern in space.

Christina Buetfering, 2014

From a bird's perspective, the activity pattern of a grid cell forms a hexagonal pattern in space—very reminiscent of a coordinate system on a map (see figure). But how is this abstract activity pattern generated that is not based on sensory input from the environment?

To find answers, researchers investigated neuronal connections by means of theoretical models. The currently most promising model is now refuted by scientists from the Bernstein Center Heidelberg/Mannheim and the Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and The German Cancer Research Center (DKFZ), who put the model to test in animal experiments.

"In our study, we measured the nerve cell activity in freely moving mice," explains Christina Buetfering, first author of the study. "We were interested in grid cells as well as nerve cells that interconnect the grid cells: so-called interneurons".

The crucial trick: the activity of interneurons could be selectively switched on and off by light signals in genetically modified mice. While the mice moved around during foraging, the researchers activated the cells now and then. This helped them to identify and closely observe the interneurons in the measured data stream. Also, they were able to analyze how grid cells responded to the activity of interneurons—giving a hint on how the neurons must be connected.

The scientists discovered that interneurons show no spatial activity patterns like grid cells do. In addition, individual interneurons are not exclusively connected to grid cells with similar activity patterns. Instead, they get their input signals from very different grid cells and send their output information to diverse nerve cells.

"With these results we were able to refute two basic predictions of the current theoretical network model," Buetfering discusses. "The model assumes that for generating the inner mental map, grid cells of the same spatial orientation must be very closely connected—which was thought to be realized via spatially active interneurons."

However, interneurons seem to have a different main task. The cells send inhibitory signals to quite different neurons in their environment. Therefore, they possibly rather take over a modulating function by ensuring a balance between excitation and inhibition in the brain area during excessive nerve cell activity.

In this way they could prevent epileptic seizures. How grid cells manage to fire at the right time at the right place—thereby generating the abstract mental coordinate system—has, once again, become more mysterious.

The Bernstein Center Heidelberg/Mannheim is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Hannah Monyer
Clinical Neurobiology (A230)
German Cancer Research Center
Im Neuenheimer Feld 280
69120 Heidelberg
Tel: +49 (0)6221 42 3100
Email: h.monyer@dkfz.de

Original publication:
C. Buetfering, K. Allen & H. Monyer (2014): Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.3696

Weitere Informationen:

http://www.dkfz.de/de/klinische-neurobiologie Lab Hannah Monyer
http://www.uni-heidelberg.de Heidelberg University
http://www.klinikum.uni-heidelberg.de Heidelberg University Hospital
http://www.dkfz.de German Cancer Research Center
http://www.bccn-heidelberg-mannheim.de Bernstein Center Heidelberg/Mannheim
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Cancer Computational Neurobiology Neuroscience activity crucial foraging neurons spatial

More articles from Life Sciences:

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>