Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rigged to explode?

20.01.2012
Inherited mutation links exploding chromosomes to cancer

An inherited mutation in a gene known as the guardian of the genome is likely the link between exploding chromosomes and some particularly aggressive types of cancer, scientists at the European Molecular Biology Laboratory (EMBL), the German Cancer Research Centre (DKFZ) and the University Hospital, all in Heidelberg, Germany, have discovered.

Their study, published online today in Cell, also presents the first whole genome sequence of a paediatric tumour: medulloblastoma, a brain cancer which is the second most common cause of childhood mortality in developed countries, where only car accidents cause more deaths in children.

Looking at the complete genome sequence of these tumours, the scientists found one or two chromosomes in each cell had countless parts in the wrong order, were missing some genes, and had extra copies of others. Such extensive rearrangements suggested that those chromosomes had been shattered, like a bead necklace that is pulled too hard, and then wrongly reassembled. But the scientists only found these telltale signs of chromosome explosion, or chromothripsis, in samples from a specific group of patients.

“All patients who had inherited a mutation in the TP53 gene showed signs of chromothripsis in their tumour cells, but none of the patients with normal TP53 did” says Jan Korbel, who led the genomics research at EMBL, “so this mutation must be involved either in shattering chromosomes, or in preventing the cell from reacting when a chromosome shatters.”

This strong link between the hereditary TP53 mutation and chromothripsis has implications for diagnosis and treatment.

“As clinicians, if we find evidence of chromothripsis in a medulloblastoma sample, we can now look for an inherited mutation in the TP53 gene” says Stefan Pfister, who led the work at the DKFZ, “and we know that any family members who also have the mutation should be screened regularly, as they’ll have a very high risk of developing particular types of cancer, including brain tumours.”

Cancer treatments often involve killing the tumour cells by damaging their DNA with chemo- or radiotherapy, but these treatments also affect healthy cells in the surrounding tissue. If those cells have healthy copies of p53 – the protein encoded by TP53 – this gene will monitor the genome, and if it finds too much damage it will instruct the cells to stop dividing, sending them into the cellular equivalent of old age (senescence) or suicide (apoptosis). But if a patient has inherited the TP53 mutation from their parents, all their cells will have faulty copies of this gene, including the cells surrounding the tumour. Thus, those healthy cells will have trouble dealing with the DNA damage caused by such treatments, and could become cancerous themselves. So the findings have immediate clinical implications in that such patients should not be given DNA-damaging chemotherapy or high-dose radiotherapy, since both would greatly increase the likelihood of secondary cancers.

The scientists believe that the TP53 mutation may also play a role in causing chromosomes to shatter in the first place, by shortening telomeres, the caps that keep chromosome ends from fraying. This could make arms from different chromosomes more likely to get stuck to each other and shatter if they’re pulled in different directions. Since telomeres naturally shorten with age, this could explain why, when the German scientists expanded their study to another cancer – an aggressive form of leukaemia in adults – they found that patients who had both a non-inherited TP53 mutation and evidence of chromothripsis were typically of an advanced age.

“Chromothripsis is thought to cause two to three percent of all human cancers,” says Korbel, “so if we can really prove how the TP53 mutation affects this process, it could have a big impact on our understanding of how healthy cells in the body turn into tumours.”

The study was undertaken as part of the International Cancer Genome Consortium (ICGC), an effort to study 50 different types of cancer worldwide.

“This study shows the power of combining genome sequencing and clinical expertise,” says Peter Lichter from DKFZ, and member of the ICGC scientific steering committee: “cancer genome sequencing can help to understand why patients can react so differently to cancer treatments, and may also lead to the development of new anti-cancer drugs.”

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>