Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rictor protein offers scientists a new molecular target for cancer therapies

29.10.2010
The discovery that a protein called Rictor plays a key role in destroying a close cousin of the AKT oncogene could provide scientists with a new molecular target for treating certain cancers, including breast cancer. Described in the September 2010 issue of the journal Molecular Cell, the study was led by scientists at Beth Israel Deaconess Medical Center (BIDMC).

The oncogenic cousin, known as SGK1, resembles the widely known AKT oncogene in structure, according to the study's senior author Wenyi Wei, PhD, of the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School (HMS).

"If we put the two proteins together, they are very similar," explains Wei. "But in one important way they are very different. AKT is stable, it lives for a long time. But SGK1 has a very short lifespan, and proteins with short lifespans tend to be powerful. Everybody's eye [has been] on AKT, but you have to wonder if this little cousin of AKT can do all the things AKT does." Wei and his team, therefore, set out to better understand how cells control SGK1.

Previous research showed that the protein Rictor forms a multi-protein complex called mTORC2 that activates both AKT and SGK1. Wei's team cultured cells lacking Rictor to observe the effect on SGK1. Surprisingly, they found that SGK1 levels increased.

"We said, that cannot be," notes Wei. "How could we get rid of the protein kinase that activates SGK1 and still have the SGK1 levels be heightened?"

They found their answer when they observed that the cells weren't producing more SGK1; rather, SGK1 was living longer. This suggested to the scientists that Rictor might be playing a role in the destruction of SGK1. And, in subsequent experiments, Wei found that SGK1 is indeed held in check by a protein complex made up of Rictor, Cullin-1, Rbx1, and possibly other components. The protein complex forms a cellular garbage collector called an E3 ligase that degrades SGK1 so it cannot build up.

"The protein Rictor is modular and multifunctional," said Wei. "Its function depends on its partners." This observation suggests that some proteins may act like a central machine that can work with a variety of attachments, the same way a construction vehicle can change its function depending on whether it's wielding a bulldozer or a crane. "With further study," he adds, "we may find more proteins [like Rictor] that have multiple functions. When a cell makes a protein this big, isn't it a waste of energy to have only one function?"

Wei's team further observed that once SGK1 begins to accumulate, it turns right around and interrupts the Rictor-Cullin1 complex, stifling it's garbage collection activities. "It looks like a positive feedback loop that serves to increase SGK1," says Wei.

"The novelty and significance of this work lies in the discovery of a role for Rictor in destroying SGK1, a key regulator of cell growth and cell death that is frequently associated with human cancers," said Marion Zatz, PhD, who manages cell cycle grants at the National Institutes of Health (NIH). "The finding suggests that faulty regulation of Rictor may play a part in some forms of cancer, and could offer us a new target for treating the disease."

While the exact role of SGK1 in tumor growth isn't yet clear, Wei speculates that SGK1 may play a role in cancer by hijacking a cell's metabolism, just as its close cousin AKT does. "This mechanism we discovered may be part of what drives overexpression of SGK1," he adds.

This study was supported, in part, by grants from the National Institutes of Health and by a DOD Prostate New Investigator Award to Wenyi Wei. Wei is a Kimmel Scholar, V Scholar and Karin Grunebaum Cancer Research Foundation Fellow.

Study coauthors include BIDMC investigators Daming Gao (first author), Lixin Wan, Hiroyuki Inuzuka, Anders Berg, Alan Tseng, Shavali Shaik, Jessica Gasser and Alex Toker; Bo Zhai, Steven Gygi, Eric Bennett, and J. Wade Harper of Harvard Medical School; and Adriana Tron and James DeCaprio of the Dana-Farber Cancer Institute.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Harvard/Dana-Farber Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>