Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rictor protein offers scientists a new molecular target for cancer therapies

29.10.2010
The discovery that a protein called Rictor plays a key role in destroying a close cousin of the AKT oncogene could provide scientists with a new molecular target for treating certain cancers, including breast cancer. Described in the September 2010 issue of the journal Molecular Cell, the study was led by scientists at Beth Israel Deaconess Medical Center (BIDMC).

The oncogenic cousin, known as SGK1, resembles the widely known AKT oncogene in structure, according to the study's senior author Wenyi Wei, PhD, of the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School (HMS).

"If we put the two proteins together, they are very similar," explains Wei. "But in one important way they are very different. AKT is stable, it lives for a long time. But SGK1 has a very short lifespan, and proteins with short lifespans tend to be powerful. Everybody's eye [has been] on AKT, but you have to wonder if this little cousin of AKT can do all the things AKT does." Wei and his team, therefore, set out to better understand how cells control SGK1.

Previous research showed that the protein Rictor forms a multi-protein complex called mTORC2 that activates both AKT and SGK1. Wei's team cultured cells lacking Rictor to observe the effect on SGK1. Surprisingly, they found that SGK1 levels increased.

"We said, that cannot be," notes Wei. "How could we get rid of the protein kinase that activates SGK1 and still have the SGK1 levels be heightened?"

They found their answer when they observed that the cells weren't producing more SGK1; rather, SGK1 was living longer. This suggested to the scientists that Rictor might be playing a role in the destruction of SGK1. And, in subsequent experiments, Wei found that SGK1 is indeed held in check by a protein complex made up of Rictor, Cullin-1, Rbx1, and possibly other components. The protein complex forms a cellular garbage collector called an E3 ligase that degrades SGK1 so it cannot build up.

"The protein Rictor is modular and multifunctional," said Wei. "Its function depends on its partners." This observation suggests that some proteins may act like a central machine that can work with a variety of attachments, the same way a construction vehicle can change its function depending on whether it's wielding a bulldozer or a crane. "With further study," he adds, "we may find more proteins [like Rictor] that have multiple functions. When a cell makes a protein this big, isn't it a waste of energy to have only one function?"

Wei's team further observed that once SGK1 begins to accumulate, it turns right around and interrupts the Rictor-Cullin1 complex, stifling it's garbage collection activities. "It looks like a positive feedback loop that serves to increase SGK1," says Wei.

"The novelty and significance of this work lies in the discovery of a role for Rictor in destroying SGK1, a key regulator of cell growth and cell death that is frequently associated with human cancers," said Marion Zatz, PhD, who manages cell cycle grants at the National Institutes of Health (NIH). "The finding suggests that faulty regulation of Rictor may play a part in some forms of cancer, and could offer us a new target for treating the disease."

While the exact role of SGK1 in tumor growth isn't yet clear, Wei speculates that SGK1 may play a role in cancer by hijacking a cell's metabolism, just as its close cousin AKT does. "This mechanism we discovered may be part of what drives overexpression of SGK1," he adds.

This study was supported, in part, by grants from the National Institutes of Health and by a DOD Prostate New Investigator Award to Wenyi Wei. Wei is a Kimmel Scholar, V Scholar and Karin Grunebaum Cancer Research Foundation Fellow.

Study coauthors include BIDMC investigators Daming Gao (first author), Lixin Wan, Hiroyuki Inuzuka, Anders Berg, Alan Tseng, Shavali Shaik, Jessica Gasser and Alex Toker; Bo Zhai, Steven Gygi, Eric Bennett, and J. Wade Harper of Harvard Medical School; and Adriana Tron and James DeCaprio of the Dana-Farber Cancer Institute.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks in the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is a clinical partner of the Joslin Diabetes Center and a research partner of the Harvard/Dana-Farber Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>