Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ricin’s Deadly Action Revealed by Glowing Probes

11.08.2008
A new chemical probe can rapidly detect ricin, a deadly poison with no known antidote that is feared to be a potential weapon for terrorists and cannot quickly be identified with currently available tests.

The probe, developed by chemists at UC San Diego, glows when bound to a ricin-damaged part of the body’s protein-making machinery, they report in the international edition of the journal Angewandte Chemie. Because the test pinpoints the specific injury underlying the poison’s toxicity, it could also help to develop drugs to counteract the effect of ricin.

Ricin toxin is among the most deadly. Just 400 micrograms, about the size of a grain of salt, is enough to kill an adult, according to a report by the Congressional Research Service. Several other toxins including saporin and sarcin all cause harm in similar ways.

These poisons nick a crucial loop of RNA that is part of the cellular structure that synthesizes proteins called the ribosome. That small alteration, the loss of a single piece at the apex the loop, is enough to shut down the manufacture of proteins. Damage of this type is unusual in the absence of these specific toxins.

“We found a chemical reporter that detects a relatively rare event, one that is related to the action of the toxin,” said Yitzhak Tor, a professor of chemistry and biochemistry at UCSD.

Tor, along with postdoctoral researcher Seergazhi Srivatsan and graduate student Nicholas Greco, created a short string of RNA building blocks, or nucleotides, that will attach to the loop. At one position, matching the site ricin damages, they substituted a synthetic nucleoside that glows when the piece that belongs there is missing. If the toxin has damaged the loop, ultraviolet light shone on the sample will fluoresce bright blue.

“Our reporter probe shows that the reaction is taking place,” Tor said. “When there’s no toxin, there will be no light emission.”

Ricin worries security experts because the toxin, an extract of castor beans, is relatively easy to make and difficult to detect. Right now, tests rely on antibodies that recognize the ricin toxin protein itself, which take at least 48 hours to complete, according to the Centers for Disease Control and Prevention. The new test works quickly; it can reveal the presence of damaged ribosome loops in less than 30 minutes.

Tor’s team has developed their probe using isolated RNA loops. These will be the basis for the future design of a sensitive chip that could be used in the field to detect quickly the presence of dangerous toxins.

And because their probe detects the action, rather than merely the presence of the toxin, it could be used to develop ways to help people who have been exposed, Tor said. “Now that we have an assay that senses the toxin’s activity, we can try to discover inhibitors of the toxin or antidotes.”

The National Institute for General Medical Sciences funded this research.

Contact: Yitzhak Tor, (858) 534-6401
Media Contact: Susan Brown, (858) 246-0161

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Protein RNA Ricin toxin Toxin ribosome loops ricin saporin sarcin synthetic nucleoside

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>