Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice U. lab leads hunt for new zeolites

04.11.2009
Database details 2.7 million possible structures for molecular sieves

In all the world, there are about 200 types of zeolite, a compound of silicon, aluminum and oxygen that gives civilization such things as laundry detergent, kitty litter and gasoline. But thanks to computations by Rice University professor Michael Deem and his colleagues, it appears there are -- or could be -- more types of zeolites than once thought.

A lot more.

A project that goes back 20 years came to fruition earlier this year when Deem, Rice's John W. Cox Professor in Biochemical and Genetic Engineering and a professor of physics and astronomy, and his team came up with a list that shows the structures of more than 2.7 million zeolite-like materials.

Of those, they found the thermodynamic characteristics of as many as 314,000 are near enough to currently known zeolites that it should be possible to manufacture these materials.

Creation of the public database is the focus of a new paper, "Computational Discovery of New Zeolite-Like Materials," posted online by the American Chemical Society's Journal of Physical Chemistry C and planned as the cover of the Dec. 24 print edition. The paper's authors include Ramdas Pophale, a postdoctoral research associate in Deem's lab; Phillip Cheeseman, senior scientific applications analyst at Purdue's Rosen Center for Advanced Computing; and David Earl, an assistant professor of chemistry at the University of Pittsburgh.

Zeolites can be viewed as "a membrane that will only let molecules of a certain size pass through," Deem said. "But they also do other things. They have an affinity for some molecules, so they're used to absorb odors, for instance, in flower shops."

In laundry detergents, zeolites trade soft ions for hard ones in the water, and the petrochemical industry uses zeolites to crack petroleum into gasoline, diesel and other products. After the accident at the Three Mile Island nuclear power plant, zeolites were used to adsorb radioactive ions.

Zeolites are a fine lattice, a molecular sieve that can let molecules of a certain size pass while blocking others. They can also adsorb molecules, attracting and gripping certain substances -- for which cats and their owners are grateful.

Natural zeolites are often the product of volcanic activity, as rocks, ash and alkaline water combine and crystallize over thousands of years. "The term zeolite comes from the combination of two Greek words that mean 'boiling' and 'stone,'" Deem said.

About a third of zeolites used for commercial purposes are mined, while the rest are synthesized into custom configurations that tend to be more pure, he said.

The fact that only 200 or so zeolites are known makes the creation of Deem's database a real breakthrough, as it gives industries new clues to optimizing their techniques. "That's one possibility, to look for related materials," he said. "In many catalytic applications, there's only one material that currently works."

It took serious computer time to figure out all the possibilities, said Deem, who has lately gained a measure of fame for his study of viruses, particularly H1N1. He began looking at zeolites two decades ago while at Exxon and published his first paper on the subject in the journal Nature. With support from the National Science Foundation (NSF) and the use of the Deem lab's Zefsa II software, researchers needed three years to complete the computations on the NSF's TeraGrid node at Purdue. "I think we were the biggest user of computer time there in 2006, and the fifth- or sixth-largest on the TeraGrid," Deem said. "At Purdue, we were making use of unused computer cycles, like the SETI@home project that searches for extraterrestrial life using people's home computers. We finished around the start of 2009."

The "big question," he said, is how to turn theoretical zeolites into real ones, a project his lab plans to pursue. "A couple of things have to happen. One is that we have to identify materials that look like they would have good properties, and then we have to find a synthesis mechanism to make those materials."

But how does one narrow the practicalities from 2.7 million possibilities? "It depends on the properties we're looking for," Deem said. "We have some ideas of what's practical, but of course we would love to work with other people."

The work received support from the U.S. Department of Energy Basic Energy Sciences Program and from the NSF.

View the paper online at http://pubs.acs.org/doi/abs/10.1021/jp906984z.

The database is available at http://sdpd.univ-lemans.fr/cod/pcod/

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>