Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice U. lab leads hunt for new zeolites

04.11.2009
Database details 2.7 million possible structures for molecular sieves

In all the world, there are about 200 types of zeolite, a compound of silicon, aluminum and oxygen that gives civilization such things as laundry detergent, kitty litter and gasoline. But thanks to computations by Rice University professor Michael Deem and his colleagues, it appears there are -- or could be -- more types of zeolites than once thought.

A lot more.

A project that goes back 20 years came to fruition earlier this year when Deem, Rice's John W. Cox Professor in Biochemical and Genetic Engineering and a professor of physics and astronomy, and his team came up with a list that shows the structures of more than 2.7 million zeolite-like materials.

Of those, they found the thermodynamic characteristics of as many as 314,000 are near enough to currently known zeolites that it should be possible to manufacture these materials.

Creation of the public database is the focus of a new paper, "Computational Discovery of New Zeolite-Like Materials," posted online by the American Chemical Society's Journal of Physical Chemistry C and planned as the cover of the Dec. 24 print edition. The paper's authors include Ramdas Pophale, a postdoctoral research associate in Deem's lab; Phillip Cheeseman, senior scientific applications analyst at Purdue's Rosen Center for Advanced Computing; and David Earl, an assistant professor of chemistry at the University of Pittsburgh.

Zeolites can be viewed as "a membrane that will only let molecules of a certain size pass through," Deem said. "But they also do other things. They have an affinity for some molecules, so they're used to absorb odors, for instance, in flower shops."

In laundry detergents, zeolites trade soft ions for hard ones in the water, and the petrochemical industry uses zeolites to crack petroleum into gasoline, diesel and other products. After the accident at the Three Mile Island nuclear power plant, zeolites were used to adsorb radioactive ions.

Zeolites are a fine lattice, a molecular sieve that can let molecules of a certain size pass while blocking others. They can also adsorb molecules, attracting and gripping certain substances -- for which cats and their owners are grateful.

Natural zeolites are often the product of volcanic activity, as rocks, ash and alkaline water combine and crystallize over thousands of years. "The term zeolite comes from the combination of two Greek words that mean 'boiling' and 'stone,'" Deem said.

About a third of zeolites used for commercial purposes are mined, while the rest are synthesized into custom configurations that tend to be more pure, he said.

The fact that only 200 or so zeolites are known makes the creation of Deem's database a real breakthrough, as it gives industries new clues to optimizing their techniques. "That's one possibility, to look for related materials," he said. "In many catalytic applications, there's only one material that currently works."

It took serious computer time to figure out all the possibilities, said Deem, who has lately gained a measure of fame for his study of viruses, particularly H1N1. He began looking at zeolites two decades ago while at Exxon and published his first paper on the subject in the journal Nature. With support from the National Science Foundation (NSF) and the use of the Deem lab's Zefsa II software, researchers needed three years to complete the computations on the NSF's TeraGrid node at Purdue. "I think we were the biggest user of computer time there in 2006, and the fifth- or sixth-largest on the TeraGrid," Deem said. "At Purdue, we were making use of unused computer cycles, like the SETI@home project that searches for extraterrestrial life using people's home computers. We finished around the start of 2009."

The "big question," he said, is how to turn theoretical zeolites into real ones, a project his lab plans to pursue. "A couple of things have to happen. One is that we have to identify materials that look like they would have good properties, and then we have to find a synthesis mechanism to make those materials."

But how does one narrow the practicalities from 2.7 million possibilities? "It depends on the properties we're looking for," Deem said. "We have some ideas of what's practical, but of course we would love to work with other people."

The work received support from the U.S. Department of Energy Basic Energy Sciences Program and from the NSF.

View the paper online at http://pubs.acs.org/doi/abs/10.1021/jp906984z.

The database is available at http://sdpd.univ-lemans.fr/cod/pcod/

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>