Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice researchers see surprising twist to protein misfolding

15.01.2013
AWSEM software finds new clues to degenerative diseases

An effort to develop software that unravels the complexities of how proteins fold is paying dividends in new findings on how they misfold, according to researchers at Rice University.

The study published this week in the Proceedings of the National Academy of Sciences by chemist Peter Wolynes and his team at Rice's BioScience Research Collaborative should be of particular interest to those who probe the roots of degenerative diseases associated with the aggregation of amyloid fibers in the body. These include Alzheimer's and Parkinson's diseases and Type 2 diabetes.

The molecular dynamics software to predict how strands of residues bend and twist into their functional shapes is designed to follow Wolynes' and his colleagues' groundbreaking "principle of minimal frustration." These residues, the molecular beads that make up proteins, follow the path of least resistance as they fold into their native states. The principle describes how evolution has shaped the path a protein takes toward stability.

The software, called AWSEM-MD (for associative memory, water-mediated structure and energy model) simulates the possible ways beads in a strand should fold, based on the energies at play down to the submolecular level, and accurately predicts the final structure. Two developers of the current version, Weihua Zheng, a postdoctoral researcher at Rice, and Nicholas Schafer, a graduate student, are co-authors of the new paper, the latest in a series on folding dynamics dependent on the software.

The researchers set out to confirm that a process seen by experimentalists called domain swapping is one cause of protein misfolding. Domains are conserved parts of protein chains. Occasionally, a domain in one chain may encounter its doppelgänger in a nearby chain and become entangled with it via interactions similar to those in the correctly folded state.

The result is often a dimer – a kind of protein Siamese twin – that probably won't be able to perform its intended biological task and may become part of a damaging amyloid fibril. "Experimentalists had some strong laboratory evidence that dimerization is a consequence of minimal frustration, an idea proposed earlier by our group on more general grounds," Wolynes said. "So we figured it would be nice to do a simulation to check it."

The team did indeed see domain swapping in their models of human cardiac titin, a muscle protein. But they were surprised to see something they weren't looking for: evidence that identical sequences in neighboring chains, as short as five to seven residues, had the unfortunate tendency to find each other and stick together.

They found instances of such "self-recognition" tipped the balance of energies that dictated whether a protein would fold properly. Replacing just a few residues in one fragment eliminated self-recognition and lowered the incidence of domain swapping, Wolynes said.

"We weren't the people who thought of this as a possibility," he said. "It had been suggested by others, although I never really believed it because it doesn't have an obvious connection to the principle of minimal frustration." But the simulations showed instances where sticky self-recognition in one segment of a chain could affect the energy of residues down the line and effectively introduce "frustration" that keeps the rest of the protein from folding at all and results in high disorder, or entropy.

While the models don't directly connect to the formation of amyloid fibrils, Wolynes said, anecdotal evidence indicates protein-folding diseases have some correlation with fevers that allow the extra entropy to stabilize the misfolded forms. "Our results would provide a new explanation," he said, for how a disordered part of the chain can contribute to the stability of these misfolded states at high temperature.

"When you hear 'take two aspirins and call me in the morning,' your doctor is doing you a bigger favor than you know," Wolynes said.

The discovery could open paths for researchers to design drugs that inhibit specific interactions. "Very minor changes seem to destroy this self-recognition in the computer simulation, and that's what we want the experimentalists to do: Make those changes to see if they decrease the self-recognition effect," he said.

"Our simulations provide structural details of misfolded proteins at the molecular level that are difficult for experiments to probe," Zheng said. "These can generate specific hypotheses they can test."

The researchers hope their work will be useful to both experimentalists and other computational protein-folding researchers.

"AWSEM is hosted on Google Code, which requires all code to be open-source," Schafer said. "So it's available to anyone who wants to use it. What we're seeing with these studies is that the values we get by applying the principle of minimal frustration are appropriate globally, not just for predicting the native structures of proteins. It can predict bound structures (like dimers) and misfolded structures as well.

"You always have to be careful about using models that 'rig the deck' in favor of a particular anticipated result," he said. "But what's interesting is that our model doesn't have any information a priori about these specific types of misfolded structures. Our model is parameterized using as input only experimental data for properly folded structures and then applying the principle of minimal frustration. The wide range of successes we've had this year tells me that we have a decent method for deriving the strengths of the interactions."

"We never really thought about specific kinds of misfolding or the aggregation process when we built our model around the principle of minimal frustration," Zheng said. "But they all fall into place."

Garegin Papoian, the Monroe Martin Associate Professor at the University of Maryland, and Aram Davtyan, a graduate student in his lab, designed and programmed most of the current version of AWSEM; this version built upon previous development by Cecilia Clementi, the Wiess Career Development Chair and a professor of chemistry and of chemical and biomolecular engineering at Rice, and others in Wolynes' labs at the University of California at San Diego and the University of Illinois at Urbana-Champaign.

The National Institute of General Medical Sciences, one of the National Institutes of Health, and the D.R. Bullard-Welch Chair at Rice University supported the research. Wolynes is the Bullard-Welch Foundation Professor of Science and a professor of chemistry and a senior scientist with the Center for Theoretical Biological Physics at Rice.

Read the paper upon publication at www.pnas.org/cgi/doi/10.1073/pnas.1222130110.

An American Chemical Society video about Wolynes' protein theory appears here: http://www.youtube.com/watch?v=N6Al_kqmFDw.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

AWSEM-MD downloads: http://code.google.com/p/awsemmd/.

AWSEM-MD: Protein Structure Prediction Using Coarse-Grained Physical Potentials and Bioinformatically Based Local Structure Biasing: http://pubs.acs.org/doi/abs/10.1021/jp212541y.

Predictive energy landscapes for protein–protein association: http://www.pnas.org/content/109/47/19244.

Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis: http://onlinelibrary.wiley.com/doi/10.1002/prot.340210302/abstract;jsessionid

=9090D4EA3FFA5424AEEB810614E523C3.d01t04

Wolynes Research Lab: http://wolynes.rice.edu/node/2?destination=node/2.

Center for Theoretical Biological Physics: http://ctbp.rice.edu/.

Images for download:

http://news.rice.edu/wp-content/uploads/2013/01/PROTEIN-2-WEB.jpg

A three-dimensional plot of energies in multidomain protein folding, produced at Rice University with the AWSEM-MD program, shows stable regions in blue at the bottom ("N") for the protein in its correct native state, and at the top ("I") in its incorrect, misfolded state. Both extremes are equally stable, though "N" proteins are lower in energy. Red and green represent the separate protein domains; the colors are jumbled in the domain-swapped structure (top) and in the "self-recognizing" structure (right), which have misfolded due to strong self-recognition interactions among the short residue sequences shown in the colored stripes. Researchers suspect misfolded proteins play a major role in the aggregation of amyloid fibers implicated in degenerative diseases. (Credit: Nicholas Schafer/Weihua Zheng/Rice University)

http://news.rice.edu/wp-content/uploads/2013/01/PROTEIN-1-WEB.jpg

Rice researchers, from left, Weihua Zheng, Professor Peter Wolynes and Nicholas Schafer confirmed through their computer models that "self-recognition" among short residue sequences on neighboring proteins plays a role in misfolding that may lead to aggregation. The AWSEM molecular dynamics software developed over many years by Wolynes' lab simulates the possible ways proteins may fold based on submolecular energies. (Credit: Eva Tittel/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRice.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>