Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice bioengineering students' invention may help diagnose painful eye condition

Rice University bioengineering students responded to an ophthalmologist's cry for help with a device to diagnose dry eye, the itching and burning sensation that results when a person doesn't produce enough tears or the tears evaporate too quickly.

A team of five seniors made a portable unit that controls the air around a patient's eyes so doctors can study and treat those who suffer from this painful condition.

Stephen Pflugfelder, the James and Margaret Elkins Chair and professor of ophthalmology at Baylor College of Medicine's Cullen Eye Institute, approached Rice to invent a device to help clinicians standardize a testing regime for dry eye.

"He wanted a way to control temperature, humidity and air flow all around the eyes and record it over time so he could track changes in their dryness," said Daniel Hays, a member of Team ClimaTears, the student group that included Austin Edwards, Amanda Shih, Anastasia Alex and Michelle Kerkstra.

The students' solution incorporates a modified and padded set of laboratory goggles with embedded data sensors that monitor temperature, relative humidity, air flow and blink rate over an hour and a half. A cable carries data saved every 10 seconds to a small box that includes controls and conditioning equipment. A separate hose carries air to the goggles.

The goggles keep the humidity of air around the eyes between 40 and 15 percent -- "about as low as we can go without hurting patients," Alex said.

"We're exacerbating the symptoms so doctors can see them," Hays explained.

Normal patients will produce tears, he said, but those who suffer dry eye will exhibit symptoms, which will give clues about how to treat them. Follow-up sessions with the goggles will let doctors see how well the treatment is working.

"With this, we're putting the power in the hands of clinicians, which is very appealing to them," Shih said.

"We did a lot of research on the ocular test they currently perform to help us analyze the data we collected," Alex said. "We know there's still a lot to be done."

"We hope our device will create a gold standard for diagnosis," Kerkstra said.

The team and Pflugfelder spent two weeks this spring testing patients at the Alkek Eye Center in Houston and will continue this summer. The students hope the larger trial will lead to an academic paper -- a fine reward for spending nearly 2,000 hours developing the goggles over the course of their final year at Rice.

Their work has already paid dividends. The students won the grand prize, $1,500, in the second annual Rice Alliance-George R. Brown School of Engineering Senior Design Elevator Pitch Competition last November, and more recently $500 for the Best Health-Related Engineering Design Project at the School of Engineering Design Showcase held April 14.

The team's faculty advisers were Renata Ramos, a Rice lecturer in bioengineering, and Maria Oden, professor in the practice of engineering education and director of Rice's Oshman Engineering Design Kitchen, where the goggles were developed.

David Ruth | EurekAlert!
Further information:

Further reports about: Design Thinking Eye Tracking Ferchau Engineering

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>