Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rewiring a damaged brain

Researchers in the Midwest are developing microelectronic circuitry to guide the growth of axons in a brain damaged by an exploding bomb, car crash or stroke. The goal is to rewire the brain connectivity and bypass the region damaged by trauma, in order to restore normal behavior and movement.

Pedram Mohseni, a professor of electrical engineering and computer science at Case Western Reserve University, and Randolph J. Nudo, a professor of molecular and integrative physiology at Kansas University Medical Center, believe repeated communications between distant neurons in the weeks after injury may spark long-reaching axons to form and connect.

Their work is inspired by the traumatic brain injuries suffered by ground troops in Afghanistan and Iraq. Despite improvements in helmets and armor, brain trauma continues to be the signature injury of these wars.

Brain damage carries a heavy toll that may include loss of coordination, balance, mobility, memory and problem-solving skills, with soldiers suffering from mood swings, depression, anxiety, aggression, social inappropriateness and emotional outbursts.

Scientists believe that as the brain develops, it naturally establishes and solidifies communication pathways between neurons that repeatedly fire together.

Nudo and others have found that during the month following injury the brain is redeveloping, with fibers that connect different parts of the brain undergoing extensive rewiring.

"The month following injury is a window of opportunity," Mohseni said. "We believe we can do this with an injured brain, which is very malleable."

Mohseni has been building a multichannel microelectronic device to bypass the gap left by injury. The device, which he calls a brain-machine-brain interface, includes a microchip on a circuit board smaller than a quarter. The microchip amplifies signals, called neural action potentials, produced by the neurons in one part of the brain and uses an algorithm to separate these signals – brain spike activity - from noise and other artifacts. Upon spike discrimination, the microchip sends a current pulse to stimulate neurons in another part of the brain, artificially connecting the two brain regions.

The miniature device currently remains outside the body, connecting to microelectrodes implanted in two regions of the brain.

Nudo has been studying and mapping brain connectivity in a rat model and developing a traumatic brain injury model to test the device and the neuroanatomical rewiring theory.

The researchers began collaborating in 2007. This month they received a $1.44 million grant from the Department of Defense Congressionally Directed Medical Research Program to continue their work and begin testing and improving the device.

During the next four years, they expect to understand the ability to rewire the brain in a rat model and to determine whether the technology is safe enough to test in non-human primates. If tests show the treatment is successful in helping recovery from traumatic brain injury, the researchers foresee the possibility of using the approach in patients 10 years from now.

Kevin Mayhood | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>