Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reviving 100-year-old resting spores of diatoms

01.03.2011
Diatoms account for a large proportion of the phytoplankton found in the water, and live both in the open sea and in freshwater lakes. By reviving 100-year-old spores that had laid buried and inactive in bottom sediment, researchers at the University of Gothenburg, Sweden, have shown that diatoms are also genetically stable and survival artists.

Recent research has shown that diatoms exhibit great genetic differences and that they occur in discrete populations, which means that they multiply sexually to a greater extent than previously believed. What makes diatoms special is that if the environment they live in becomes too inhospitable they form resting spores, which gather in sediment at the bottom of the sea. When conditions improve, the spores can be revived.

The study concerned is based on a sample of sediment from a highly eutrophic Danish fjord on the east coast of Jutland, Mariager Fjord, whose anoxic bottoms and bottom sediments today do not show any signs of life. After dating the different layers of a sediment core, the researchers took small pieces of sediment from various depths and transferred them to an environment favourable to diatoms. This enabled them to revive resting spores.

”We revived hundreds of genetic individuals of diatoms and induced them to start dividing again and to form cloned cultures. The oldest are more than 100 years old, the youngest quite fresh. We then identified the revived individuals genetically," says Anna Godhe of the Department of Marine Ecology at the University of Gothenburg.

40 000 generations of diatoms
As diatoms normally divide once a day, this means that for a diatom a period of 100 years is equivalent to 40 000 generations. In human terms, this means genetic material equivalent to around 800 000 years.

”We found certain differences between the algae that went into a state of rest at the start of the 20th century compared with those that formed resting spores when the eutrophication was at its worst and the freshest ones of all, but the individuals are for the most part very homogeneous throughout the sediment core, that’s to say 40 000 generations of diatoms.”

No traces of genetic impact over 100 years
”The most exciting thing of all in the whole study is that there are no traces at all of genetic impact from the open sea population on the diatoms in Mariager Fjord during the 100 years we have studied, despite a constant influx of diatoms from the Kattegatt with the surface water. Not one out of all the millions upon millions of diatoms that have found their way into the fjord from the Kattegatt has become established and continued to grow in the fjord.
The researchers believe that this is due to the fact that the algae that live inside the fjord are so superbly well adapted to the fjord environment and that there are so many of them (millions per litre of water, thousands per gram of sediment) that colonisers from outside are rapidly out-competed.

The article Hundred years of genetic structure in a sediment revived diatom population has been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The study has been conducted by Karolina Härnström and Anna Godhe at the University of Gothenburg in cooperation with Marianne Ellegaard and Thorbjørn J. Andersen at Copenhagen University.

Contact:
Anna Godhe, Department of Marine Ecology, University of Gothenburg
+46 (0)31 786 2709
anna.godhe@marecol.gu.se
Karolina Härnström, Department of Marine Ecology, University of Gothenburg
+46 (0)73 043 9247
karolinaharnstrom@gmail.com

Helena Aaberg | idw
Further information:
http://www.gu.se
http://ub016008.ub.gu.se/cgi-bin/auth.cgi?url=http://www.pnas.org/content/early/2011/01/27/1013528108.full.pdf+html?sid=8290eb67

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>