Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reviving 100-year-old resting spores of diatoms

01.03.2011
Diatoms account for a large proportion of the phytoplankton found in the water, and live both in the open sea and in freshwater lakes. By reviving 100-year-old spores that had laid buried and inactive in bottom sediment, researchers at the University of Gothenburg, Sweden, have shown that diatoms are also genetically stable and survival artists.

Recent research has shown that diatoms exhibit great genetic differences and that they occur in discrete populations, which means that they multiply sexually to a greater extent than previously believed. What makes diatoms special is that if the environment they live in becomes too inhospitable they form resting spores, which gather in sediment at the bottom of the sea. When conditions improve, the spores can be revived.

The study concerned is based on a sample of sediment from a highly eutrophic Danish fjord on the east coast of Jutland, Mariager Fjord, whose anoxic bottoms and bottom sediments today do not show any signs of life. After dating the different layers of a sediment core, the researchers took small pieces of sediment from various depths and transferred them to an environment favourable to diatoms. This enabled them to revive resting spores.

”We revived hundreds of genetic individuals of diatoms and induced them to start dividing again and to form cloned cultures. The oldest are more than 100 years old, the youngest quite fresh. We then identified the revived individuals genetically," says Anna Godhe of the Department of Marine Ecology at the University of Gothenburg.

40 000 generations of diatoms
As diatoms normally divide once a day, this means that for a diatom a period of 100 years is equivalent to 40 000 generations. In human terms, this means genetic material equivalent to around 800 000 years.

”We found certain differences between the algae that went into a state of rest at the start of the 20th century compared with those that formed resting spores when the eutrophication was at its worst and the freshest ones of all, but the individuals are for the most part very homogeneous throughout the sediment core, that’s to say 40 000 generations of diatoms.”

No traces of genetic impact over 100 years
”The most exciting thing of all in the whole study is that there are no traces at all of genetic impact from the open sea population on the diatoms in Mariager Fjord during the 100 years we have studied, despite a constant influx of diatoms from the Kattegatt with the surface water. Not one out of all the millions upon millions of diatoms that have found their way into the fjord from the Kattegatt has become established and continued to grow in the fjord.
The researchers believe that this is due to the fact that the algae that live inside the fjord are so superbly well adapted to the fjord environment and that there are so many of them (millions per litre of water, thousands per gram of sediment) that colonisers from outside are rapidly out-competed.

The article Hundred years of genetic structure in a sediment revived diatom population has been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The study has been conducted by Karolina Härnström and Anna Godhe at the University of Gothenburg in cooperation with Marianne Ellegaard and Thorbjørn J. Andersen at Copenhagen University.

Contact:
Anna Godhe, Department of Marine Ecology, University of Gothenburg
+46 (0)31 786 2709
anna.godhe@marecol.gu.se
Karolina Härnström, Department of Marine Ecology, University of Gothenburg
+46 (0)73 043 9247
karolinaharnstrom@gmail.com

Helena Aaberg | idw
Further information:
http://www.gu.se
http://ub016008.ub.gu.se/cgi-bin/auth.cgi?url=http://www.pnas.org/content/early/2011/01/27/1013528108.full.pdf+html?sid=8290eb67

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>