Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reverse evolution in real-time

12.01.2009
Instituto Gulbenkian de Ciência scientists turn back clock on evolution in fruit fly to provide key insights into basic mechanisms of evolution

In his book, Wonderful World, Stephen Jay Gould writes about an experiment of ‘replaying life’s tape’, wherein one could go back in time, let the tape of life play again and see if ‘the repetition looks at all like the original’.

Evolutionary biology tells us that it wouldn’t look the same – the outcome of evolution is contingent on everything that came before. Now, scientists at the Instituto Gulbenkian de Ciência (IGC) in Portugal, New York University and the University of California Irvine, provide the first quantitative genetic evidence of why this is so.

In this study, to be published online this week in the journal Nature Genetics, Henrique Teotónio and his colleagues recreated natural selection in real-time, in the laboratory (rather than based on inferences from fossil records or from comparing existing natural populations) and provide the first quantitative evidence for natural selection on so-called standing genetic variation – a process long thought to be operating in natural populations that reproduce sexually but which, until now, had never been demonstrated.

The researchers used laboratory-grown populations of fruit fly (Drosophila melanogaster), derived from an original group of flies, harvested from the wild back in 1975. These ancestral flies were grown in the laboratory, for two decades, under different environmental conditions, (such as starvation and longer life-cycles) so that each population was selected for specific characteristics. Henrique Teotónio and his colleagues placed these populations back in the ancestral environment, for 50 generations, to impose reverse evolution on the flies, and then looked at the genetic changes in certain areas of chromosome 3 of these flies.

Says Henrique, ‘In 2001 we showed that evolution is reversible in as far as phenotypes are concerned, but even then, only to a point. Indeed, not all the characteristics evolved back to the ancestral state. Furthermore, some characteristics reverse-evolved rapidly, while others took longer. Reverse evolution seems to stop when the populations of flies achieve adaptation to the ancestral environment, which may not coincide with the ancestral state. In this study, we have shown that underlying these phenomena is the fact that, at the genetic level, convergence to the ancestral state is on the order of 50%, that is, on average, only half of the gene frequencies revert to the ancestral gene frequencies – evolution is contingent upon history at the genetic level too’.

These findings provide further insights into the basic understanding of how evolution and diversity are generated and maintained. On the one hand, it provides evidence for evolution happening through changes in the distribution of alleles in a population (so-called standing genetic variation), from generation to generation, rather than the appearance of mutations, from one generation to the next. On the other hand, as Henrique notes, ‘It has implications for the definition of biodiversity: some of the ‘reversed’ flies may be phenotypically identical to the ancestral flies, but they are genetically different. How then do we define biodiversity?’

This study was funded by a Fundação para a Ciência e a Tecnologia grant awarded to Henrique Teotónio, who joined the IGC in 2003 as a group leader and currently heads the Evolutionary Genetics group and the in-house PhD Programme in Life Sciences.

Ana Godinho | alfa
Further information:
http://www.nature.com/ng/index.html
http://www.igc.gulbenkian.pt

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>