Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing the stars of brain adaptability

15.05.2012
Star-shaped brain cells called astrocytes are found to bridge the gap between global brain activity and localized circuits. Global network activity in the brain modulates local neural circuitry via calcium signaling in non-neuronal cells called astrocytes (Fig. 1), according to research led by Hajime Hirase of the RIKEN Brain Science Institute.
The finding clarifies the link between two important processes in the brain.

Activity in large-scale brain networks is thought to modulate changes in neuronal connectivity, so-called ‘synaptic plasticity’, in the cerebral cortex. The neurotransmitter acetylcholine regulates global brain activity associated with attention and awareness, and is involved in plasticity.
To investigate how these processes are linked, Hirase and his colleagues simultaneously stimulated the whiskers of mice and the nucleus basalis of Meynert (NBM), a basal forebrain structure containing neurons that synthesize acetylcholine and project widely to the cortex. Using electrodes and an imaging technique called two-photon microscopy, performed through a ‘cranial window', they monitored the responses of cells in the barrel cortex, which receives inputs from the whiskers.

Recordings from the electrodes showed that repeated co-stimulation of the whiskers and NBM induced plasticity in the barrel cortex. This plasticity depended on two types of receptors—muscarinic acetylcholine receptors (mAChRs) and N-methyl-D-aspartic acid receptors (NMDARs). Two-photon imaging microscopy further revealed that activation of the mAChRs during co-stimulation elevated the concentration of calcium ions within astrocytes of the barrel cortex.

The researchers repeated these experiments in mutant mice lacking the receptor that controls the release of calcium ions in astrocytes. Since co-stimulation of whiskers and NBM did not induce plasticity in the mutants, Hirase and colleagues concluded that calcium signaling in astrocytes acts as a ‘gate’ linking the changes in global brain state induced by acetylcholine to activity in local cortical circuits.

Figure 1: Astrocytes are star-shaped cells with numerous fine projections that ensheath synapses in the brain. Copyright : © 2012 Hajime Hirase

Furthermore, the researchers found that stimulation of the NBM led to an increase in the extracellular concentration of the amino acid D-serine in the normal, but not the mutant, mice. D-serine is secreted by astrocytes and activates NMDARs. Hirase’s team had previously shown that astrocytes are electrically silent in living rodents even in the presence of neural activity. The new findings showed that the biochemical, as opposed to electrical, activation of astrocytes induces them to release the transmitter that modulates synaptic plasticity in the neuronal circuitry.

“Our study is probably the first to show that calcium signaling in astrocytes is related to neuronal circuit plasticity in living animals,” says Hirase. “We are now studying if this type of calcium signaling occurs in all parts of an astrocyte or is restricted to some parts of the cell.”

The corresponding author for this highlight is based at the Laboratory for Neuron–Glia Circuitry, RIKEN Brain Science Institute

References:

1.Takata, N., Mishima, T., Hisatsune, C., Nagai, T., Ebisui, E., Mikoshiba, K. & Hirase, H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. The Journal of Neuroscience 31, 18155–18165 (2011).

2.Mishima, T. & Hirase, H. In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous. The Journal of Neuroscience 30, 3093–3100 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp
http://www.researchsea.com

Further reports about: Brain Hirase NBM NMDARs Neuroscience RIKEN Science TV calcium ions calcium signaling cerebral cortex

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>