Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing the regulating mechanism behind signal transduction in the brain

19.09.2008
Our brain consists of billions of cells that continually transmit signals to each other. This dynamic process - which enables us to learn, remember, and so much more - works only when the brain cells make contact correctly, or, in other words, when there is a good ‘synapse’.

An essential element in this process is a controlled protein production along with the synapse. VIB researchers connected to the Center for Human Genetics (K.U.Leuven) are now discovering how the Fragile X protein (FMRP) ensures that protein production is controlled at synapse and regulated by brain activity. Their findings are being published in the authoritative scientific journal Cell.

Fathoming the brain

Our ‘gray matter’ has yet to divulge all its secrets. For example, we do not yet fully understand how we are able to learn and remember things. We do know that dendrites and axons - the offshoots of brain cells - play a crucial role by making contact with each other in so-called synapses, through which signals are transmitted between different brain cells. Moreover, for properly functioning brain activity at a synapse, the right proteins must be present in the right concentrations. It has been known for some time that the brain’s cells are able to produce proteins directly at the place where they are needed. But exactly how the subtle regulation of this process works is still to be discovered.

FMRP: controlling protein production

Claudia Bagni (VIB, K.U.Leuven, University of Rome Tor Vergata) has been studying the FMRP protein for years now. The absence of FMRP leads to the Fragile X syndrome, a mental handicap afflicting a thousand Belgians. In this particular syndrome, the synapses are not well-formed. So, it is no surprise that FMRP plays an important role in the development and functioning of the brain. The researchers have already shown that FMRP suppresses protein production, but how has remained a mystery.

A shared job with CYFIP1

Ilaria Napoli and her colleagues from Claudia Bagni’s group are now discovering that FMRP cannot perform its job without another protein: CYFIP1. In a previous study, Claudia Bagni and her collaborators have shown that a reduced amount of FMRP in the brain increases the production of some neuronal proteins. The VIB researchers in Leuven have now elucidated the mechanism behind this. They have found that complexes of FMRP and CYFIP1 are located at the synapses and together suppress the local production of a number of proteins.

In the transduction of signals between brain cells, i.e. synaptic activation, CYFIP1 is released from the complex, whereby FMRP can no longer exercise its suppressing action. This is the impetus for the production of the proteins that are under the control of FMRP.

A change in the concentration of FMRP or CYFIP1 causes a disruption in this strict regulation of protein production. This, in its turn, causes diseases like Fragile X syndrome and Autism. Indeed, CYFIP1 has been recently found associated to Autism.

Importance of this research

With their research, Napoli and Bagni are shedding a bit more light on synapses in the brain - giving us more insight into learning and remembering, and also into a number of ‘brain disorders’. We now understand that, through its absence, FMRP plays a role in diseases like Fragile X syndrome and Autism.

Jonas De Backer | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>