Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Revealing the regulating mechanism behind signal transduction in the brain

Our brain consists of billions of cells that continually transmit signals to each other. This dynamic process - which enables us to learn, remember, and so much more - works only when the brain cells make contact correctly, or, in other words, when there is a good ‘synapse’.

An essential element in this process is a controlled protein production along with the synapse. VIB researchers connected to the Center for Human Genetics (K.U.Leuven) are now discovering how the Fragile X protein (FMRP) ensures that protein production is controlled at synapse and regulated by brain activity. Their findings are being published in the authoritative scientific journal Cell.

Fathoming the brain

Our ‘gray matter’ has yet to divulge all its secrets. For example, we do not yet fully understand how we are able to learn and remember things. We do know that dendrites and axons - the offshoots of brain cells - play a crucial role by making contact with each other in so-called synapses, through which signals are transmitted between different brain cells. Moreover, for properly functioning brain activity at a synapse, the right proteins must be present in the right concentrations. It has been known for some time that the brain’s cells are able to produce proteins directly at the place where they are needed. But exactly how the subtle regulation of this process works is still to be discovered.

FMRP: controlling protein production

Claudia Bagni (VIB, K.U.Leuven, University of Rome Tor Vergata) has been studying the FMRP protein for years now. The absence of FMRP leads to the Fragile X syndrome, a mental handicap afflicting a thousand Belgians. In this particular syndrome, the synapses are not well-formed. So, it is no surprise that FMRP plays an important role in the development and functioning of the brain. The researchers have already shown that FMRP suppresses protein production, but how has remained a mystery.

A shared job with CYFIP1

Ilaria Napoli and her colleagues from Claudia Bagni’s group are now discovering that FMRP cannot perform its job without another protein: CYFIP1. In a previous study, Claudia Bagni and her collaborators have shown that a reduced amount of FMRP in the brain increases the production of some neuronal proteins. The VIB researchers in Leuven have now elucidated the mechanism behind this. They have found that complexes of FMRP and CYFIP1 are located at the synapses and together suppress the local production of a number of proteins.

In the transduction of signals between brain cells, i.e. synaptic activation, CYFIP1 is released from the complex, whereby FMRP can no longer exercise its suppressing action. This is the impetus for the production of the proteins that are under the control of FMRP.

A change in the concentration of FMRP or CYFIP1 causes a disruption in this strict regulation of protein production. This, in its turn, causes diseases like Fragile X syndrome and Autism. Indeed, CYFIP1 has been recently found associated to Autism.

Importance of this research

With their research, Napoli and Bagni are shedding a bit more light on synapses in the brain - giving us more insight into learning and remembering, and also into a number of ‘brain disorders’. We now understand that, through its absence, FMRP plays a role in diseases like Fragile X syndrome and Autism.

Jonas De Backer | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>