Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing how experts’ minds tick

04.04.2011
Neural activity representing intuitive responses in the brains of professional board game players shows what sets experts apart

Primates, particularly humans, are set apart from other vertebrates by more than a huge expansion of the cerebral cortex, the region of the brain used for thinking. The connection and coordination of the cerebral cortex with other, older parts of the brain also play a significant role, according to findings published recently in Science by a research team from the RIKEN Brain Science Institute (BSI) in Wako[1].

The researchers, led by Keiji Tanaka, found that professional players of the Japanese chess-like game of shogi (Fig. 1) can use part of brain associated with intuitive or habitual behaviors to establish a best next-move in a way that distinguishes them from amateurs. One result of experience and training seems to be the ability to shunt some immediate neural tasks from the cerebral cortex to the more intuitive basal ganglia, leaving the cortex free for planning higher-level strategy.

“Our findings may be regarded as showing that in amateur players problem-solving occurs mostly in the newly developed brain structure, but in professionals an important part of the process goes to the old brain structure,” Tanaka says. “This shift makes the process quick and unconscious.”

The work may have significant ramifications for training, particularly in understanding what constitutes an intuitive part of a job as opposed to the intellectual or educative part. It is also relevant to the development of computer expert systems. “The elucidation of such brain mechanisms may hint at a way to train engineers efficiently to become experts,” Tanaka explains. “Trouble shooting of computer networks, for instance, is dependent on intuitive insights of experienced engineers. They often focus on specific points of the network, but cannot explain why they do so.”

Using board games to understand the mind

Investigating mechanisms of higher brain functions of decision making has been one of the prime interests of Tanaka’s laboratory at BSI. An important question in this field, which has long been a subject of inquiry, is how experts differ from the rest of us.

Although psychologists have been studying the players of such games for more than a century, there has been almost no work on the underlying neural mechanisms. Consequently, differences in neural activity between the brains of amateur and expert players remain poorly understood. Tanaka and his team designed their study, in part, to provide much-needed data on brain function.

The psychological studies of board game players led researchers to propose that expert chess players perceive patterns more quickly than amateurs by matching them to a series of stereotyped arrangements known as ‘chunks‘. The theory is that these chunks are associated with best next-moves in the long-term memory of expert chess players, so they can use them as a rapidly accessed starting point for responding to the problem.

To test this theory, Tanaka and his colleagues worked with groups of professional and high- and low-rank amateur players of shogi. They studied short and longer-term responses of players when asked to plot the best next-move in various shogi problems, akin to chess problems. Shogi problems can be more complex than those of chess because captured shogi pieces are allowed to re-enter play on the side of the player who has taken them.

Visualizing the minds of experts

Members of Tanaka’s team with significant expertise in functional magnetic resonance imaging (fMRI) used this non-invasive technique to pinpoint which parts of the brain are active at a particular time. They initially presented shogi players with board game patterns of different types—opening shogi patterns, endgame shogi patterns, random shogi patterns, chess, Chinese chess—as well as other completely different stimuli such as scenes and faces. The board game patterns, but not the other scenes, stimulated activity in the posterior precuneus region of the cerebral cortex of all shogi players. Previous fMRI studies have shown that the precuneus is generally associated with tasks involving visuo-spatial imagery, the relationship of shapes to one another. In this study, activity was particularly strong in professional players presented with shogi opening and endgame patterns. The researchers suggest this is associated with pattern recognition specific to their area of expertise—in this case, shogi.

Tanaka and his colleagues then asked players to nominate the best next-move in a series of shogi problems under two sets of circumstances. In the first, they were allowed only one second to study the presented pattern; in the second, eight seconds. Reactions to the short-term problem would rely solely on intuition, the researchers reasoned, whereas the longer-term problem allowed time for conscious analysis. This contention was supported by interviews with the subjects afterwards.

Professional players presented with the short-term problem displayed activity in the caudate nucleus of the older, more primitive part of the brain, the basal ganglia (Fig. 2). The neural activity of amateurs in response to all problems and of professionals to the longer-term problem was confined to the cerebral cortex. The researchers propose, therefore, that development of an intuitive response is a result of the training and experience that marks experts.

“To further elucidate processes of intuitive problem-solving,” says Tanaka, “we need to establish primate models, in which a wider range of experimental methods can be applied.”

About the Researcher: Keiji Tanaka

Keiji Tanaka graduated from the Department of Biophysical Engineering, Osaka University in 1973. He got his Ph. D. in 1983 from The University of Tokyo, Medical School by dissertation. He is now studying mechanisms of visual object recognition and those of goal-directed behavior by using single-cell recordings and lesion-behavioral methods on nonhuman primates. He has also pursued fMRI on the human cortex at sub-millimeter spatial resolution. He was one of the founding members of the brain science research group in RIKEN. He is now the deputy director of the RIKEN Brain Science Institute. He has also actively worked in the international neuroscience community; e.g. acting in the editorial boards of many important journals, including Science, Neuron and The Journal of Neuroscience, and serving as the deputy chair of the International Neuroinformatics Coordinating Facility.

Journal information
[1] Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K. & Tanaka, K. The neural basis of intuitive best next-move generation in board game experts. Science 331, 341–346 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6583
http://www.researchsea.com

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>