Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reveal the Enemy

20.07.2009
Carbon nanotubes and aptamers: new biosensor detects extremely low bacteria concentrations quickly, easily, and reliably

Bacterial diseases are usually detected by first enriching samples, then separating, identifying, and counting the bacteria.

This type of procedure usually takes at least two days after arrival of the sample in the laboratory. Tests that work faster, in the field, and without complex sample preparation, whilst being precise and error-free, are thus high on the wish list.

A Spanish research team headed by Jordi Riu and F. Xavier Rius at the University Rovira i Virgili in Tarragona has now developed a new technique to make this wish come true. With a novel biosensor, they have been able to detect extremely low concentrations of the typhus-inducing Salmonella typhi.

As reported in the journal Angewandte Chemie, their new method is based on electrochemical measurements by means of carbon nanotubes equipped with aptamers as bacteria-specific binding sites. If bacteria bind to the aptamers, the researchers detect a change in electrical voltage.

Aptamers are synthetic, short DNA or RNA strands that can be designed and made to bind a specific target molecule. An aptamer that specifically binds to salmonella has recently been developed. The Spanish researchers chose to use this aptamer for their biosensor. By means of additional functional groups, they securely anchored the aptamers to carbon nanotubes, which were deposited onto an electrode in an ultrathin layer.

In the absence of salmonella, the aptamers fit closely against the walls of the carbon nanotubes. If the biosensor is put into a salmonella-containing sample, the microbes stick to the aptamers like flies to flypaper. This influences the interaction between the aptamers and the nanotubes, which makes a change in the electrode voltage noticeable within seconds.

Using this biosensor, the researchers were able to detect a bacterial concentration equivalent to one salmonella bacterium in 5 mL of medium. Quantitative measurements were possible down to a concentration of about 1000 salmonella per milliliter. This biosensor is specific: it does not react to bacteria other than Salmonella typhi. “Our new technique makes the detection of micro-organisms as fast and simple as the measurement of pH value,” say Riu and Rius.

Author: Jordi Riu, Universitat Rovira i Virgili, Tarragona (Spain), mailto:jordi.riu@urv.cat

Title: Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon-Nanotube-Based Potentiometric Aptasensor

Angewandte Chemie International Edition, doi: 10.1002/anie.200902090

Jordi Riu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>