Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why retroviruses such as HIV love their neighbors

28.07.2009
Retroviruses such as HIV that are already within cells are much more easily transmitted when they are next to uninfected cells than if they are floating free in the bloodstream.

"Cell-to-cell transmission is a thousand times more efficient, which is why diseases such as AIDS are so successful and so deadly," said Walther Mothes, associate professor of microbial pathogenesis at the Yale School of Medicine. "And because the retroviruses are already in cells, they are out of reach of the immune system."

Now, Yale University researchers led by Mothes and Jing Jin, a postdoctoral associate in Mothes' lab, have made movies of viral activity within cells that help explain why cell-to-cell transmission is so efficient and provide potential targets for a new generation of AIDS drugs.

Using imaging technology that can track individual particles of virus in real time, the Yale team discovered that infected cells can specifically produce viruses at the point of contact between cells, they report in the July 27 edition of the open access journal PLoS Biology. Ten times more of these particles are found at these cellular poles than elsewhere at the surface of cells, the researchers report. The ability of infected cells to specifically produce viruses only at cell-cell interfaces explains how viruses spread so efficiently, they note.

The researchers also identified a possible weakness in the transmission chain. The team found that viruses express a sticky protein that docks with uninfected cells and then attracts viral assembly to these sites. If this adhesion molecule lacked a "cytoplasmic tail," then the viral particles did not assemble at the jumping off point between cells.

Mothes expects many more such targets will be identified as scientists work out the mechanics of cell-to-cell transmission.

"We are just opening the door to this whole process," Mothes said. "It is a black box, and many, many cellular factors have to be involved in making this happen. Our hope is that somewhere down the road we will have a completely new anti-viral strategy based on targeting cell-to-cell transmission."

Nathan M. Sherer was another Yale-affiliated author of the paper.

The work was funded by the National Cancer Institute and amfAR, The Foundation for AIDS Research.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>