Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why retroviruses such as HIV love their neighbors

28.07.2009
Retroviruses such as HIV that are already within cells are much more easily transmitted when they are next to uninfected cells than if they are floating free in the bloodstream.

"Cell-to-cell transmission is a thousand times more efficient, which is why diseases such as AIDS are so successful and so deadly," said Walther Mothes, associate professor of microbial pathogenesis at the Yale School of Medicine. "And because the retroviruses are already in cells, they are out of reach of the immune system."

Now, Yale University researchers led by Mothes and Jing Jin, a postdoctoral associate in Mothes' lab, have made movies of viral activity within cells that help explain why cell-to-cell transmission is so efficient and provide potential targets for a new generation of AIDS drugs.

Using imaging technology that can track individual particles of virus in real time, the Yale team discovered that infected cells can specifically produce viruses at the point of contact between cells, they report in the July 27 edition of the open access journal PLoS Biology. Ten times more of these particles are found at these cellular poles than elsewhere at the surface of cells, the researchers report. The ability of infected cells to specifically produce viruses only at cell-cell interfaces explains how viruses spread so efficiently, they note.

The researchers also identified a possible weakness in the transmission chain. The team found that viruses express a sticky protein that docks with uninfected cells and then attracts viral assembly to these sites. If this adhesion molecule lacked a "cytoplasmic tail," then the viral particles did not assemble at the jumping off point between cells.

Mothes expects many more such targets will be identified as scientists work out the mechanics of cell-to-cell transmission.

"We are just opening the door to this whole process," Mothes said. "It is a black box, and many, many cellular factors have to be involved in making this happen. Our hope is that somewhere down the road we will have a completely new anti-viral strategy based on targeting cell-to-cell transmission."

Nathan M. Sherer was another Yale-affiliated author of the paper.

The work was funded by the National Cancer Institute and amfAR, The Foundation for AIDS Research.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>