Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why retroviruses such as HIV love their neighbors

Retroviruses such as HIV that are already within cells are much more easily transmitted when they are next to uninfected cells than if they are floating free in the bloodstream.

"Cell-to-cell transmission is a thousand times more efficient, which is why diseases such as AIDS are so successful and so deadly," said Walther Mothes, associate professor of microbial pathogenesis at the Yale School of Medicine. "And because the retroviruses are already in cells, they are out of reach of the immune system."

Now, Yale University researchers led by Mothes and Jing Jin, a postdoctoral associate in Mothes' lab, have made movies of viral activity within cells that help explain why cell-to-cell transmission is so efficient and provide potential targets for a new generation of AIDS drugs.

Using imaging technology that can track individual particles of virus in real time, the Yale team discovered that infected cells can specifically produce viruses at the point of contact between cells, they report in the July 27 edition of the open access journal PLoS Biology. Ten times more of these particles are found at these cellular poles than elsewhere at the surface of cells, the researchers report. The ability of infected cells to specifically produce viruses only at cell-cell interfaces explains how viruses spread so efficiently, they note.

The researchers also identified a possible weakness in the transmission chain. The team found that viruses express a sticky protein that docks with uninfected cells and then attracts viral assembly to these sites. If this adhesion molecule lacked a "cytoplasmic tail," then the viral particles did not assemble at the jumping off point between cells.

Mothes expects many more such targets will be identified as scientists work out the mechanics of cell-to-cell transmission.

"We are just opening the door to this whole process," Mothes said. "It is a black box, and many, many cellular factors have to be involved in making this happen. Our hope is that somewhere down the road we will have a completely new anti-viral strategy based on targeting cell-to-cell transmission."

Nathan M. Sherer was another Yale-affiliated author of the paper.

The work was funded by the National Cancer Institute and amfAR, The Foundation for AIDS Research.

Bill Hathaway | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>