Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retrovirus in the human genome is active in pluripotent stem cells

24.01.2013
Discovery may offer new insights into the development of stem cell therapies

A retrovirus called HERV-H, which inserted itself into the human genome millions of years ago, may play an important role in pluripotent stem cells, according to a new study published in the journal Retrovirology by scientists at UMass Medical School. Pluripotent stem cells are capable of generating all tissue types, including blood cells, brain cells and heart cells.

The discovery, which may help explain how these cells maintain a state of pluripotency and are able to differentiate into many types of cells, could have profound implications for therapies that would use pluripotent stem cells to treat a range of human diseases.

"What we've observed is that a group of endogenous retroviruses called HERV-H is extremely busy in human embryonic stem cells," said Jeremy Luban, MD, the David L. Freelander Memorial Professor in HIV/AIDS Research, professor of molecular medicine and lead author of the study. "In fact, HERV-H is one of the most abundantly expressed genes in pluripotent stem cells and it isn't found in any other cell types."

In the study, Dr. Luban and colleagues describe how RNA from the HERV-H sequence makes up as much as 2 percent of the total RNA found in pluripotent stem cells. The HERV-H sequence is controlled by the same factors that are used to reprogram skin cells into induced pluripotent stem (iPS) cells, a discovery that garnered the 2012 Nobel Prize in Physiology or Medicine. "In other words, HERV-H is a new marker for pluripotency in humans that has the potential to aid in the development of iPS cells and transform current stem cell technology," said Luban.

When a retrovirus infects a cell, it inserts its own genes into the chromosomal DNA of the host cell. As a result, the host cell treats the viral genome as part of its own DNA sequence and begins making the proteins required to assemble new copies of the virus. And because the retrovirus is now part of the host cell's genome, when the cell divides, the virus is inherited by all daughter cells.

In rare cases, it's believed that retroviruses can infect human sperm or egg cells. If this happens, and if the resulting embryo survives, the retrovirus can become a permanent part of the human genome, and be passed down from generation to generation. Scientists estimate that as much as 8 percent of the human genome may be comprised of extinct retroviruses left over from infections that occurred millions of years ago. Yet these sequences of fossilized retrovirus were thought to have no discernible functional value.

"The human genome is filled with retrovirus DNA thought to be no more than fossilized junk," said Luban. "Increasingly, there are indications that these sequences might not be junk. They might play a role in gene expression after all."

An expert in HIV and other retroviruses, Luban and his colleagues were seeking to understand if there was a rationale behind where, in the expansive human genome, retroviruses inserted themselves. Knowing where along the chromosomal DNA retroviruses might attack could potentially lead to the development of drugs that protect against infection; better gene therapy treatments; or novel biomarkers that would predict where a retrovirus would insert itself in the genome, said Luban.

Turning these same techniques on the retrovirus sequences already in the human genome, they discovered a sequence, HERV-H, that appeared to be active. "The sequences weren't making proteins because they had been so disrupted over millions of years, but they were making these long, noncoding RNAs," said Luban.

Specifically, the HERV-H sequence was making abundant amounts of RNA in human embryonic stem cells—and only stem cells. In total, there are more than 1,000 HERV-H retrovirus genomes scattered throughout the human genome. The Luban lab also found high levels of HERV-H RNA in some iPS cells. Other iPS cells, perhaps those lines that were not sufficiently reprogrammed to pluripotency, had lower levels of the HERV-H RNA, another indication that HERV-H may be an important marker for pluripotency.

Interestingly, the HERV-H genes that were expressed in human pluripotent stem cells are only found in the human and chimpanzee genomes, indicating that HERV-H infected a relatively recent ancestor to humans, said Luban.

"Once upon a time HERV-H was an invader to our genome and perhaps caused diseases like AIDS or cancer," said Luban. "Now it seems that a kind of détente has been reached. Not only that, but this ancient invader may one day be exploited by clinicians to cure people of a wide range of diseases using stem cell therapies."

Luban and colleagues will next try to determine the specific mechanisms by which HERV-H contributes to pluripotency.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts. For more information, visit www.umassmed.edu.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>