Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New retrieval method makes studying cancer proteins easier

08.07.2010
A Purdue University researcher can better retrieve specific proteins needed to study how cancer cells form by using a newly developed technique and synthetic nanopolymer.

W. Andy Tao, an assistant professor of biochemistry, said these specific proteins, called phosphoproteins, can be mapped and analyzed so that we can find ways to inhibit the processes that lead to cancer. But first those few proteins must be fished out of a sea of thousands of others.

Tao developed and patented the polymer-based metal-ion affinity capture, or PolyMAC. The synthetic nanopolymer isolates proteins and peptides that have undergone a process called phosphorylation that is highly associated with cancer, and a patented technique allows Tao to retrieve those proteins. Obtaining the information on these proteins is important for studying how to inhibit the processes that lead to cancer.

"You really want to capture these particular proteins, but there are so many different types of proteins around them," said Tao, whose findings were published in the early online version of the journal Molecular & Cellular Proteomics. "The target proteins are a thousand times lower in amount than other proteins. They are difficult to study without the capturing step."

Normal cells grow, divide and eventually die. But cancer cells continue to grow and do not die. Tao said phosphorylation - in which a type of enzyme called a kinase attaches to and catalyzes a protein on a cell - is thought in many cases to be responsible for creating cancer cells.

Tao's nanopolymer is water-soluble and has titanium ions on its surface, which bind with phosphorylated proteins and peptides contained in a solution. The polymer also has a chemical group attached that is reactive and attached to small beads, which allow Tao to retrieve the polymers.

"Once you put the nanopolymer in the solution, you have to retrieve them, so we put a handle on the polymer so we can grab on to it and fish it out of the solution," Tao said.

In laboratory tests, Tao's nanopolymer and retrieval technique isolated about twice as many proteins that had been phosphorylated by an enzyme highly expressed in certain leukemia cells but absent in metastatic breast cancer cells.

Tao is now seeking opportunities to get the polymer and technique into wider use to aid in the development of new cancer drugs.

"This technique is very useful and can be used widely in research for cancer as well as infectious diseases," Tao said.

The National Institutes of Health and the National Science Foundation funded Tao's research. A $1 million NIH grant under the American Reinvestment and Recovery Act paid for a mass spectrometer Tao uses to analyze and map the proteins he recovers using his nanopolymer and retrieval technique.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Andy Tao, 765-494-9605, taow@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>