Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinal cells thoughts to be the same are not

26.07.2011
The old adage "Looks can be deceiving" certainly rings true when it comes to people. But it is also accurate when describing special light-sensing cells in the eye, according to a Johns Hopkins University biologist.

In a study recently published in Nature, a team led by Samer Hattar of the Department of Biology at the Krieger School of Arts and Sciences and Tudor Badea at the National Eye Institute found that these cells, which were thought to be identical and responsible for both setting the body's circadian rhythm and the pupil's reaction to light and darkness, are actually two different cells, each responsible for one of those tasks.

"In biology, as in life, you can't always trust what you see," said Hattar. "You have to delve deep to find out what's really going on. This study has shown that two structurally similar neurons are actually quite different and distinct, communicate with different regions of the brain and influence different visual functions."

The findings are significant, Hattar said, because doctors sometimes use pupillary light reflex (the pupil's response to light and darkness) as a way of diagnosing patients who may have sleep problems, and those clinicians now must recognize that the cells controlling pupillary response and those controlling the sleep-wake cycle are different.

"Although the diagnosis may still be valid most of the time, it is important to remember that disrupted pupillary light response with normal sleep wake cycles or the opposite is possible, and caution should be exercised if clinicians only use pupillary light reflex for diagnosis purposes for deficits in non-image forming visual functions," explained Shih-Kuo (Alen) Chen, a post-doctoral fellow in the Department of Biology and co-author of the Nature article.

Hattar's research focuses on these special light-sensitive cells and how they regulate the physiology and behavior of mammals.

"In human beings, light has an impact on many of our physiological functions, including sleep and mood," he explains. "We are interested in the cellular, molecular and behavioral pathways by which light has an impact on us, independent of how and what we literally 'see' with our eyes. This includes setting our internal, biological clock to the day and night and constricting our pupils to control the amount of light coming through to our retinas."

In a previous study, Hattar's team revealed that these cells -- called "intrinsically photosensitive Retinal Ganglion Cells" -- also play a role in image formation. Formerly, it was thought that the ipRGCs' role was limited to sleep-wake cycles and pupillary responses.

This work was funded by the National Institutes of Health, the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation.

Link to study online: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10206.html

Link to Hattar's website: http://www.bio.jhu.edu/Faculty/Hattar/

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>