Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retinal cells thoughts to be the same are not

26.07.2011
The old adage "Looks can be deceiving" certainly rings true when it comes to people. But it is also accurate when describing special light-sensing cells in the eye, according to a Johns Hopkins University biologist.

In a study recently published in Nature, a team led by Samer Hattar of the Department of Biology at the Krieger School of Arts and Sciences and Tudor Badea at the National Eye Institute found that these cells, which were thought to be identical and responsible for both setting the body's circadian rhythm and the pupil's reaction to light and darkness, are actually two different cells, each responsible for one of those tasks.

"In biology, as in life, you can't always trust what you see," said Hattar. "You have to delve deep to find out what's really going on. This study has shown that two structurally similar neurons are actually quite different and distinct, communicate with different regions of the brain and influence different visual functions."

The findings are significant, Hattar said, because doctors sometimes use pupillary light reflex (the pupil's response to light and darkness) as a way of diagnosing patients who may have sleep problems, and those clinicians now must recognize that the cells controlling pupillary response and those controlling the sleep-wake cycle are different.

"Although the diagnosis may still be valid most of the time, it is important to remember that disrupted pupillary light response with normal sleep wake cycles or the opposite is possible, and caution should be exercised if clinicians only use pupillary light reflex for diagnosis purposes for deficits in non-image forming visual functions," explained Shih-Kuo (Alen) Chen, a post-doctoral fellow in the Department of Biology and co-author of the Nature article.

Hattar's research focuses on these special light-sensitive cells and how they regulate the physiology and behavior of mammals.

"In human beings, light has an impact on many of our physiological functions, including sleep and mood," he explains. "We are interested in the cellular, molecular and behavioral pathways by which light has an impact on us, independent of how and what we literally 'see' with our eyes. This includes setting our internal, biological clock to the day and night and constricting our pupils to control the amount of light coming through to our retinas."

In a previous study, Hattar's team revealed that these cells -- called "intrinsically photosensitive Retinal Ganglion Cells" -- also play a role in image formation. Formerly, it was thought that the ipRGCs' role was limited to sleep-wake cycles and pupillary responses.

This work was funded by the National Institutes of Health, the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation.

Link to study online: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10206.html

Link to Hattar's website: http://www.bio.jhu.edu/Faculty/Hattar/

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>