Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resurrected mammoth blood very cool

03.05.2010
A team of international researchers has brought the primary component of mammoth blood back to life using ancient DNA preserved in bones from Siberian specimens 25,000 to 43,000 years old.

Studies of recreated mammoth haemoglobin, published today (Monday 3 May) in Nature Genetics, reveal special evolutionary adaptations that allowed the mammoth to cool its extremities down in harsh Arctic conditions to minimise heat loss.

"It has been remarkable to bring a complex protein from an extinct species, such as the mammoth, back to life," says Professor Alan Cooper, Director of the Australian Centre for Ancient DNA (ACAD) at the University of Adelaide, where the mammoth haemoglobin sequences were determined.

"This is true palaeobiology, as we can study and measure how these animals functioned as if they were alive today."

Professor Cooper is an Australian Research Council Future Fellow and a member of the University's Environment Institute.

"We've managed to uncover physiological attributes of an animal that hasn't existed for thousands of years," says team leader Professor Kevin Campbell of the University of Manitoba, Canada. "Our approach opens the way to studying the biomolecular and physiological characteristics of extinct species, even for features that leave no trace in the fossil record."

The project began over seven years ago when Professor Campbell contacted Professor Cooper, who was then based at the University of Oxford, to suggest resurrecting mammoth haemoglobin.

"At the time, I thought 'what a great idea' – but it's never going to work," says Professor Cooper. "Still, bringing an extinct protein back to life is such an important concept, we've got to try it."

The team converted the mammoth haemoglobin DNA sequences into RNA, and inserted them into modern-day E. coli bacteria, which then manufactured the authentic mammoth protein.

"The resulting haemoglobin molecules are no different than 'going back in time' and taking a blood sample from a real mammoth," says Professor Campbell.

The team used modern scientific physiological tests and chemical modelling to characterise the biochemical properties that confer mammoths with physiological cold tolerance.

Team member Professor Roy Weber of the University of Aarhus, Denmark, who performed the physiological testing on the mammoth proteins, says the findings help show how the mammoth survived the extreme Arctic cold.

"Three highly unusual changes in the protein sequence allowed the mammoth's blood to deliver oxygen to cells even at very low temperatures, something that indicates adaptation to the Arctic environment," Professor Weber says.

"We can now apply similar approaches to other extinct species, such as Australian marsupials," says team member Dr Jeremy Austin, ACAD Deputy Director, who is currently using ancient DNA to study the evolution and extinction of the thylacine and Tasmanian Devil.

Professor Alan Cooper | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>