Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resurrected mammoth blood very cool

03.05.2010
A team of international researchers has brought the primary component of mammoth blood back to life using ancient DNA preserved in bones from Siberian specimens 25,000 to 43,000 years old.

Studies of recreated mammoth haemoglobin, published today (Monday 3 May) in Nature Genetics, reveal special evolutionary adaptations that allowed the mammoth to cool its extremities down in harsh Arctic conditions to minimise heat loss.

"It has been remarkable to bring a complex protein from an extinct species, such as the mammoth, back to life," says Professor Alan Cooper, Director of the Australian Centre for Ancient DNA (ACAD) at the University of Adelaide, where the mammoth haemoglobin sequences were determined.

"This is true palaeobiology, as we can study and measure how these animals functioned as if they were alive today."

Professor Cooper is an Australian Research Council Future Fellow and a member of the University's Environment Institute.

"We've managed to uncover physiological attributes of an animal that hasn't existed for thousands of years," says team leader Professor Kevin Campbell of the University of Manitoba, Canada. "Our approach opens the way to studying the biomolecular and physiological characteristics of extinct species, even for features that leave no trace in the fossil record."

The project began over seven years ago when Professor Campbell contacted Professor Cooper, who was then based at the University of Oxford, to suggest resurrecting mammoth haemoglobin.

"At the time, I thought 'what a great idea' – but it's never going to work," says Professor Cooper. "Still, bringing an extinct protein back to life is such an important concept, we've got to try it."

The team converted the mammoth haemoglobin DNA sequences into RNA, and inserted them into modern-day E. coli bacteria, which then manufactured the authentic mammoth protein.

"The resulting haemoglobin molecules are no different than 'going back in time' and taking a blood sample from a real mammoth," says Professor Campbell.

The team used modern scientific physiological tests and chemical modelling to characterise the biochemical properties that confer mammoths with physiological cold tolerance.

Team member Professor Roy Weber of the University of Aarhus, Denmark, who performed the physiological testing on the mammoth proteins, says the findings help show how the mammoth survived the extreme Arctic cold.

"Three highly unusual changes in the protein sequence allowed the mammoth's blood to deliver oxygen to cells even at very low temperatures, something that indicates adaptation to the Arctic environment," Professor Weber says.

"We can now apply similar approaches to other extinct species, such as Australian marsupials," says team member Dr Jeremy Austin, ACAD Deputy Director, who is currently using ancient DNA to study the evolution and extinction of the thylacine and Tasmanian Devil.

Professor Alan Cooper | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>