Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resolving controversy at the water’s edge

30.01.2012
High-level spectroscopy and computer simulations of specially diluted liquids reveal the long-debated structure of air–water interfaces

Water (H2O) has a simple composition, but its dizzyingly interconnected hydrogen-bonded networks make structural characterizations challenging. In particular, the organization of water surfaces—a region critical to processes in cell biology and atmospheric chemistry—has caused profound disagreements among scientists.


Figure 1: A ‘snapshot’ from a molecular dynamic simulation reveals that water molecules align at air–water interfaces as coordinated pairs linked by hydrogen bonds. Copyright : 2012 RIKEN

Now, Tahei Tahara and colleagues from the RIKEN Advanced Science Institute in Wako, in collaboration with researchers in Japan and Europe, have uncovered the presence of strongly bonded water pairs at the air–water interface1, rather than previously hypothesized ‘ice-like’ surface structures.

Observing surface water molecules, just a few monolayers thick, requires special experimental techniques that prevent interference by more plentiful bulk particles. One such approach is called vibrational sum frequency generation (VSFG), a laser-based method that selectively vibrates interfacial molecules. Previous VSFG measurements of surface water showed two vibrations that resemble signals recorded from bulk ice and liquid water states. Some scientists have proposed that these vibrations correspond to a partially disordered mix of liquid and four-coordinated ice-like surface structures—a theory at odds with thermodynamic evidence.

Other VSFG experiments, however, have suggested that the two vibrations arise from one structure undergoing coupling interactions. To resolve this dispute, Tahara and colleagues turned to heterodyne-detected VSFG (HD-VSFG), a high-level spectroscopic method that detects how the phase of the vibrational signals shifts with respect to the incident laser beam—information that can pinpoint molecular orientation at interfaces.

The researchers then employed a trick using isotopes to account for coupling effects of water molecules: they added the deuterium (D)-bearing compounds HOD and D2O to pure water. By gradually diluting the number of oxygen–hydrogen (OH) bonds in the liquid, these isotopes suppress the interactions between the vibrational modes that normally occur. The remaining ‘stretching’ vibrations that extend and contract OH bonds then provide clear information about the interfacial water structure.
The team’s experiments revealed that as the isotopic dilution progressed, the two OH bands merged into a single peak, which is clear evidence of vibrational coupling within a single structure. After performing molecular dynamic simulations and comparing the results to the HD-VSFG data, a new picture emerged of the air–water interface (Fig. 1): the low-frequency OH vibrations were due to tightly joined pairs of liquid water molecules.

“We were wondering what kind of structure can have strong hydrogen-bonds other than ice at water surfaces,” says Tahara. “When our experiments and [co-author] Morita’s simulation answered the question, rather than surprise I felt that ‘This is it!’ because its structure is quite reasonable.”

The corresponding author for this highlight is based at the Molecular Spectroscopy Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>