Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance to last-line antibiotic makes bacteria resistant to immune system

21.05.2013
Bacteria resistant to the antibiotic colistin are also commonly resistant to antimicrobial substances made by the human body, according to a study in mBio®, the online open-access journal of the American Society for Microbiology.

Cross-resistance to colistin and host antimicrobials LL-37 and lysozyme, which help defend the body against bacterial attack, could mean that patients with life-threatening multi-drug resistant infections are also saddled with a crippled immune response.

Colistin is a last-line drug for treating several kinds of drug-resistant infections, but colistin resistance and the drug's newfound impacts on bacterial resistance to immune attack underscore the need for newer, better antibiotics.

Corresponding author David Weiss of Emory University says the results show that colistin therapy can fail patients in two ways. "The way that the bacteria become resistant [to colistin] allows them to also become resistant to the antimicrobials made by our immune system. That is definitely not what doctors want to do when they're treating patients with this last line antibiotic," says Weiss.

Although it was developed fifty years ago, colistin remains in use today not so much because it's particularly safe or effective, but because the choices for treating multi-drug resistant Acinetobacter baumannii and other resistant infections are few and dwindling. Colistin is used when all or almost all other drugs have failed, often representing a patient's last hope for survival.

Weiss says he and his colleagues noted that colistin works by disrupting the inner and outer membranes that hold Gram-negative bacterial cells together, much the same way two antimicrobials of the human immune system, LL-37 and lysozyme, do. LL-37 is a protein found at sites of inflammation, whereas lysozyme is found in numerous different immune cells and within secretions like tears, breast milk, and mucus, and both are important defenses against invading bacteria. Weiss and his collaborators from Emory, the CDC, Walter Reed Army Institute of Research, and Grady Memorial Hospital in Atlanta set out to find whether resistance to colistin could engender resistance to attack by LL-37 or lysozyme.

Looking at A. baumannii isolates from patients around the country, they noted that all the colistin-resistant strains harbored mutations in pmrB, a regulatory gene that leads to the modification of polysaccharides on the outside of the cell in response to antibiotic exposure. Tests showed a tight correlation between the ability of individual isolates to resist high concentrations of colistin and the ability to resist attacks by LL-37 or lysozyme.

This was very convincing, write the authors, that mutations in the pmrB gene were responsible for cross-resistance to LL-37 and lysozyme, but to get closer to a causative link between treatment and cross-resistance, they studied two pairs of A. baumannii isolates taken from two different patients before and after they were treated for three or six weeks with colistin. The results helped confirm the cross-resistance link: neither strain taken before treatment was resistant to colistin, LL-37, or lysozyme, but the strains taken after treatment showed significant resistance to colistin and lysozyme. (One post-colistin isolate was no more or less resistant to LL-37 than its paired pre-colistin isolate.) Like the resistant strains tested earlier, both post-colistin isolates harbored crucial mutations in the pmrB gene that apparently bestow the ability to resist treatment.

The authors point out that the apparent link between resistance to colistin and cross-resistance to antimicrobial agents of the immune system could well extend to other pathogens that are treated with colistin, including Pseudomonas aeruginosa and Klebsiella pneumoniae. Weiss says he plans to follow up with studies to determine whether this bears out.

For Weiss, the problems with colistin are symptomatic of a much larger trio of problems: increasing levels of drug resistance, cuts in federal funding for antibiotic research, and lack of incentives for pharmaceutical companies to invest in antibiotic R&D. "We don't have enough antibiotics, and it's really important for the research community and the public to support increases in funding for research to develop new antibiotics," says Weiss.

"We got complacent for a while and the bugs are becoming resistant. This is something we can reverse - or make a lot better - if we have the resources."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>