Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching Growth-Regulation Proteins That Underlie Cancer

10.11.2009
A University of Arkansas researcher will study potential cancer-causing mutants of a protein involved in cell growth regulation, thanks to a supplemental grant from the National Institutes of Health.

Paul Adams, assistant professor of chemistry and biochemistry, has received $108,000 over two years as part of the American Recovery and Reinvestment Act to hire two postdoctoral associates who will perform detailed studies of two different mutants of a protein involved in cell growth regulation.

“One of the hallmarks of cancer is that the cell does not turn off – it keeps growing,” Adams said. “Our goal is to find ways to eradicate this behavior.”

Adams studies a member of the Ras family of proteins that is involved in turning the growth of a cell on and off. His research team has created genetically engineered mutants of the protein with interesting results.

“If you engineer chemical differences in what you think are important regions of a protein, you can determine how vital these regions really are to the function of the protein,” Adams said. “This allows you to determine the important aspects of proteins that need to be targeted for therapeutic purposes.”

The first new study will be based on a finding in Adams’ laboratory – that a single mutation in the Ras protein decreases the flexibility of an important interaction. The new study will focus on simple experiments to determine how the decreased flexibility interferes with the protein’s ability to do its job.

“We made a mutation in an important region of our Ras protein known to be vital for the proper interaction of cell signaling regulatory proteins, and the mutation seemed to reduce the flexibility of the protein,” Adams said. “We have preliminary data that shows that this one mutation causes a decrease in an important protein-protein interaction,” one that interferes with the protein’s ability to properly signal between its active and inactive state – thus, the cell cannot turn growth on and off.

The second new study facilitated by the NIH supplement will be based on work in Adams’ laboratory, which characterized the molecular details of a mutation that highlighted how the protein, which normally cycles between active and inactive states, existed in a permanently active state, also known as a “fast-cycling mutant.” The new research will help determine if a mutation alone generates the fast-cycling state dictated by the nature of a bound nucleotide, or if an important protein-protein interaction is also disturbed, helping to cause the Ras protein to be permanently active. To do this, the researchers have created a mutant that destabilizes the binding region of the Ras protein.

“If Ras proteins are in an over-active state, this facilitates oncogenic activity,” Adams said.

“Our long-term goal in the laboratory is to use the information gained from our studies on the molecular details of these mutations in the subsequent design of drugs to change protein interactions that may cause oncogenic cell signaling,” Adams said.

Adams is a professor in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Paul Adams, assistant professor, chemistry and biochemistry
J. William Fulbright College of Arts and Sciences
479-575-5621, pxa001@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>