Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching Growth-Regulation Proteins That Underlie Cancer

10.11.2009
A University of Arkansas researcher will study potential cancer-causing mutants of a protein involved in cell growth regulation, thanks to a supplemental grant from the National Institutes of Health.

Paul Adams, assistant professor of chemistry and biochemistry, has received $108,000 over two years as part of the American Recovery and Reinvestment Act to hire two postdoctoral associates who will perform detailed studies of two different mutants of a protein involved in cell growth regulation.

“One of the hallmarks of cancer is that the cell does not turn off – it keeps growing,” Adams said. “Our goal is to find ways to eradicate this behavior.”

Adams studies a member of the Ras family of proteins that is involved in turning the growth of a cell on and off. His research team has created genetically engineered mutants of the protein with interesting results.

“If you engineer chemical differences in what you think are important regions of a protein, you can determine how vital these regions really are to the function of the protein,” Adams said. “This allows you to determine the important aspects of proteins that need to be targeted for therapeutic purposes.”

The first new study will be based on a finding in Adams’ laboratory – that a single mutation in the Ras protein decreases the flexibility of an important interaction. The new study will focus on simple experiments to determine how the decreased flexibility interferes with the protein’s ability to do its job.

“We made a mutation in an important region of our Ras protein known to be vital for the proper interaction of cell signaling regulatory proteins, and the mutation seemed to reduce the flexibility of the protein,” Adams said. “We have preliminary data that shows that this one mutation causes a decrease in an important protein-protein interaction,” one that interferes with the protein’s ability to properly signal between its active and inactive state – thus, the cell cannot turn growth on and off.

The second new study facilitated by the NIH supplement will be based on work in Adams’ laboratory, which characterized the molecular details of a mutation that highlighted how the protein, which normally cycles between active and inactive states, existed in a permanently active state, also known as a “fast-cycling mutant.” The new research will help determine if a mutation alone generates the fast-cycling state dictated by the nature of a bound nucleotide, or if an important protein-protein interaction is also disturbed, helping to cause the Ras protein to be permanently active. To do this, the researchers have created a mutant that destabilizes the binding region of the Ras protein.

“If Ras proteins are in an over-active state, this facilitates oncogenic activity,” Adams said.

“Our long-term goal in the laboratory is to use the information gained from our studies on the molecular details of these mutations in the subsequent design of drugs to change protein interactions that may cause oncogenic cell signaling,” Adams said.

Adams is a professor in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Paul Adams, assistant professor, chemistry and biochemistry
J. William Fulbright College of Arts and Sciences
479-575-5621, pxa001@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>