Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching Growth-Regulation Proteins That Underlie Cancer

10.11.2009
A University of Arkansas researcher will study potential cancer-causing mutants of a protein involved in cell growth regulation, thanks to a supplemental grant from the National Institutes of Health.

Paul Adams, assistant professor of chemistry and biochemistry, has received $108,000 over two years as part of the American Recovery and Reinvestment Act to hire two postdoctoral associates who will perform detailed studies of two different mutants of a protein involved in cell growth regulation.

“One of the hallmarks of cancer is that the cell does not turn off – it keeps growing,” Adams said. “Our goal is to find ways to eradicate this behavior.”

Adams studies a member of the Ras family of proteins that is involved in turning the growth of a cell on and off. His research team has created genetically engineered mutants of the protein with interesting results.

“If you engineer chemical differences in what you think are important regions of a protein, you can determine how vital these regions really are to the function of the protein,” Adams said. “This allows you to determine the important aspects of proteins that need to be targeted for therapeutic purposes.”

The first new study will be based on a finding in Adams’ laboratory – that a single mutation in the Ras protein decreases the flexibility of an important interaction. The new study will focus on simple experiments to determine how the decreased flexibility interferes with the protein’s ability to do its job.

“We made a mutation in an important region of our Ras protein known to be vital for the proper interaction of cell signaling regulatory proteins, and the mutation seemed to reduce the flexibility of the protein,” Adams said. “We have preliminary data that shows that this one mutation causes a decrease in an important protein-protein interaction,” one that interferes with the protein’s ability to properly signal between its active and inactive state – thus, the cell cannot turn growth on and off.

The second new study facilitated by the NIH supplement will be based on work in Adams’ laboratory, which characterized the molecular details of a mutation that highlighted how the protein, which normally cycles between active and inactive states, existed in a permanently active state, also known as a “fast-cycling mutant.” The new research will help determine if a mutation alone generates the fast-cycling state dictated by the nature of a bound nucleotide, or if an important protein-protein interaction is also disturbed, helping to cause the Ras protein to be permanently active. To do this, the researchers have created a mutant that destabilizes the binding region of the Ras protein.

“If Ras proteins are in an over-active state, this facilitates oncogenic activity,” Adams said.

“Our long-term goal in the laboratory is to use the information gained from our studies on the molecular details of these mutations in the subsequent design of drugs to change protein interactions that may cause oncogenic cell signaling,” Adams said.

Adams is a professor in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Paul Adams, assistant professor, chemistry and biochemistry
J. William Fulbright College of Arts and Sciences
479-575-5621, pxa001@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>