Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers work at the frontiers of islet cell transplantation

18.02.2011
Two studies published in the current issue of Cell Transplantation (19:12) investigate frontiers of islet cell transplantation for treating diabetes. Researchers in Milan, Italy re-examine the role of bone marrow stem cells in diabetic therapy and islet cell regeneration and Canadian researchers offer improved strategies for optimizing pancreatic islet culture in vitro.

Both studies are in the current issue of Cell Transplantation, freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

New perspectives on role of bone marrow stem cells in islet transplantation

The role of bone marrow (BM)-derived stem cells in the islet cell regeneration process continues to evolve. A team of Italian researchers reports that employing BM-derived stem cells as "feeder tissue," playing a protective role in supporting pancreatic islet repair for clinical use in treating diabetes, presents new therapeutic possibilities. Which cellular components of BM play the feeder role has not been clear.

"BM-derived cells have been found to differentiate into endothelial cells and their presence has been accompanied by a proliferation of recipient pancreatic cells that resulted in increased insulin production in the host pancreas," said corresponding author Dr. Lorenzo Piemonti.

The researchers speculate that BM plays a role as feeder tissue by modulating, or enhancing, vascularization.

"We recently demonstrated that pancreatic mensenchymal stromal cells (MSCs) originate from bone marrow cells," added Dr. Piemonti. "This suggests that there might be a 'cross talk' between bone marrow cells and the pancreas. Even more complex is the question of whether BM-pancreas cross talk plays a role in the pathogenesis of diabetes."

For the researchers, the 'easy availability' of BM, and that BM may offer "the ideal microenvironment for islet survival," suggest that exploring the possibility of using BM as the site for islet transplantation and they have started a clinical trial aimed at expanding on that idea.

"There is mounting evidence that BM and BM-derived stem cells can participate in the regeneration of pancreatic isolates," concluded Dr. Piemonti. "Future studies should evaluate their effect for the prevention and cure of diabetes should it be verifiable that there is a cross talk between BM and the pancreas."

Contact: Dr. Lorenzo Piemonti, Diabetes Research Institute, S. Raffaele Scientific Institute, Via Oligettina 60, 20132 Milan, Italy
Tel: 39-02-26432706 Fax : 39-02 -26432871
Email: piemonti.lorenzo@hsr.it
Citation : Ciceri, F.; Piemonti L. Bone Marrow And Pancreatic Islet: An Old Story With New Perspectives. Cell Transplant. 19(12): 1511-1522: 2010.

Improving pancreatic islet culture and preservation

Retrieving and preserving islet cells taken from nonliving donors for the purpose of islet cell transplantation to regenerate islet cells for patients suffering from diabetes is a current and successful practice. However, ensuring the integrity of the donor cells has been problematic.

"Following human islet isolation, apoptosis, or programmed cell death, occurs," said Dr. Maryam Tabrizian, member of a McGill University (Canada) research team. "Studies have shown that islet isolation exposes islets to a variety of stresses, including loss of vasculature and eventual hypoxia. These factors must be controlled to avoid cell death and the optimization of islet culture must be assured to prolong the survival and functionality of the cells in vitro."

According to the research team, nearly half of the islet mass is lost during donor surgery, preservation, transport and isolation, causing patients to undergo a second islet cell infusion. Better avenues of post-isolation culture, for up to two months duration, are needed, they said. This requires a better understanding of islet biology and the "basement membrane" of islet tissue. The researchers recommend combining many strategies supporting understanding of the need to maintain islet structural integrity and to provide a viable environment for islet preservation.

"Manipulation of the culture media, surface modified substrates, and the use of various techniques, such as encapsulation, embedding, scaffold and bioreactor approaches are among those strategies," concluded the researchers.

"The survival of islets after isolation remains a significant limiting factor in the field of islet transplantation." commented Dr. Rodolfo Alejandro, section editor for CELL TRANSPLANTATION and Professor of Medicine at the University of Miami Miller School of Medicine. The prevention and repair of islet damage during isolation is of paramount importance. These two studies discuss novel approaches for this problem.

Contact: Dr. Maryam Tabrizian, Duff Medical Building, 3775 University St. Room 313, Montreal, Canada QC H3A 2B4.
Tel: (514) 398-8129 Fax: (514) 398-7461
Email maryam.tabrizian@mcgill.ca
Citation: Daoud, J.; Rosenberg, L.; Tabrizian, M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant. 19(12):1523-1535; 2010.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>