Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers work at the frontiers of islet cell transplantation

18.02.2011
Two studies published in the current issue of Cell Transplantation (19:12) investigate frontiers of islet cell transplantation for treating diabetes. Researchers in Milan, Italy re-examine the role of bone marrow stem cells in diabetic therapy and islet cell regeneration and Canadian researchers offer improved strategies for optimizing pancreatic islet culture in vitro.

Both studies are in the current issue of Cell Transplantation, freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

New perspectives on role of bone marrow stem cells in islet transplantation

The role of bone marrow (BM)-derived stem cells in the islet cell regeneration process continues to evolve. A team of Italian researchers reports that employing BM-derived stem cells as "feeder tissue," playing a protective role in supporting pancreatic islet repair for clinical use in treating diabetes, presents new therapeutic possibilities. Which cellular components of BM play the feeder role has not been clear.

"BM-derived cells have been found to differentiate into endothelial cells and their presence has been accompanied by a proliferation of recipient pancreatic cells that resulted in increased insulin production in the host pancreas," said corresponding author Dr. Lorenzo Piemonti.

The researchers speculate that BM plays a role as feeder tissue by modulating, or enhancing, vascularization.

"We recently demonstrated that pancreatic mensenchymal stromal cells (MSCs) originate from bone marrow cells," added Dr. Piemonti. "This suggests that there might be a 'cross talk' between bone marrow cells and the pancreas. Even more complex is the question of whether BM-pancreas cross talk plays a role in the pathogenesis of diabetes."

For the researchers, the 'easy availability' of BM, and that BM may offer "the ideal microenvironment for islet survival," suggest that exploring the possibility of using BM as the site for islet transplantation and they have started a clinical trial aimed at expanding on that idea.

"There is mounting evidence that BM and BM-derived stem cells can participate in the regeneration of pancreatic isolates," concluded Dr. Piemonti. "Future studies should evaluate their effect for the prevention and cure of diabetes should it be verifiable that there is a cross talk between BM and the pancreas."

Contact: Dr. Lorenzo Piemonti, Diabetes Research Institute, S. Raffaele Scientific Institute, Via Oligettina 60, 20132 Milan, Italy
Tel: 39-02-26432706 Fax : 39-02 -26432871
Email: piemonti.lorenzo@hsr.it
Citation : Ciceri, F.; Piemonti L. Bone Marrow And Pancreatic Islet: An Old Story With New Perspectives. Cell Transplant. 19(12): 1511-1522: 2010.

Improving pancreatic islet culture and preservation

Retrieving and preserving islet cells taken from nonliving donors for the purpose of islet cell transplantation to regenerate islet cells for patients suffering from diabetes is a current and successful practice. However, ensuring the integrity of the donor cells has been problematic.

"Following human islet isolation, apoptosis, or programmed cell death, occurs," said Dr. Maryam Tabrizian, member of a McGill University (Canada) research team. "Studies have shown that islet isolation exposes islets to a variety of stresses, including loss of vasculature and eventual hypoxia. These factors must be controlled to avoid cell death and the optimization of islet culture must be assured to prolong the survival and functionality of the cells in vitro."

According to the research team, nearly half of the islet mass is lost during donor surgery, preservation, transport and isolation, causing patients to undergo a second islet cell infusion. Better avenues of post-isolation culture, for up to two months duration, are needed, they said. This requires a better understanding of islet biology and the "basement membrane" of islet tissue. The researchers recommend combining many strategies supporting understanding of the need to maintain islet structural integrity and to provide a viable environment for islet preservation.

"Manipulation of the culture media, surface modified substrates, and the use of various techniques, such as encapsulation, embedding, scaffold and bioreactor approaches are among those strategies," concluded the researchers.

"The survival of islets after isolation remains a significant limiting factor in the field of islet transplantation." commented Dr. Rodolfo Alejandro, section editor for CELL TRANSPLANTATION and Professor of Medicine at the University of Miami Miller School of Medicine. The prevention and repair of islet damage during isolation is of paramount importance. These two studies discuss novel approaches for this problem.

Contact: Dr. Maryam Tabrizian, Duff Medical Building, 3775 University St. Room 313, Montreal, Canada QC H3A 2B4.
Tel: (514) 398-8129 Fax: (514) 398-7461
Email maryam.tabrizian@mcgill.ca
Citation: Daoud, J.; Rosenberg, L.; Tabrizian, M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant. 19(12):1523-1535; 2010.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>