Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Unveil Molecular Details of How Bacteria Propagate Antibiotic Resistance

30.07.2012
Fighting “superbugs” – strains of pathogenic bacteria that are impervious to the antibiotics that subdued their predecessor generations – has required physicians to seek new and more powerful drugs for their arsenals.

Unfortunately, in time, these treatments also can fall prey to the same microbial ability to become drug resistant. Now, a research team at the University of North Carolina at Chapel Hill (UNC) may have found a way to break the cycle that doesn’t demand the deployment of a next-generation medical therapy: preventing “superbugs” from genetically propagating drug resistance.

The team will present their findings at the annual meeting of the American Crystallographic Association (ACA), held July 28 – Aug. 1 in Boston, Mass.

For years, the drug vancomycin has been the last-stand treatment for life-threatening cases of methicilin-resistant Staphylococcus aureus, or MRSA. A powerful antibiotic first isolated in 1953 from soil collected in the jungles of Borneo, vancomycin works by inhibiting formation of the S. aureus cell wall so that it cannot provide structural support and protection. In 2002, however, a strain of S. aureus was isolated from a diabetic kidney dialysis patient. This particular strain would not succumb to vancomycin. This was the first recorded instance in the United States of vancomycin-resistant Staphylococcus aureus, or VRSA, a deadly variant that many now consider one of the most dangerous bacteria in the world.

Former UNC graduate student Jonathan Edwards (now at the Massachusetts Institute of Technology), under the guidance of chemistry professor Matthew Redinbo, led the research team that sought a detailed biochemical understanding of the VRSA threat. They focused on a S. aureus plasmid – a circular loop of double-stranded DNA within the Staph cell separate from the genome – called plW1043 that codes for drug resistance and can be transferred via conjugation (“mating” that involves genetic material passing through a tube from a donor bacterium to a recipient).

Before the plasmid gene for drug resistance can be passed, it must be processed for the transfer. This occurs when a protein called the Nicking Enzyme of Staphylococci, or NES, binds with its active area, known as the relaxase region, to the donor cell plasmid. NES then cuts, or “nicks,” one strand of the double helix so that it separates into two single strands of DNA. One moves into the recipient cell while the other remains with the donor. After the two strands are replicated, NES reforms the plasmid in both cells, creating two drug-resistant Staph cells that are ready to spread their misery further.

Using X-ray crystallography, Edwards, Redinbo, and their colleagues defined the structure of both ends of the VRSA NES protein, the N-terminus where the relaxase region resides and the molecule’s opposite end known as the C-terminus. They noticed that the N-terminus structure included a region with two distinct protein loops. Suspecting that this area might play a critical role in the VRSA plasmid transfer process, the researchers cut out the loops. This kept the NES relaxase region from clamping onto or staying bound to the plasmid DNA.

Biochemical assays showed that the function of the loops was indeed to keep the relaxase region attached to the plasmid until nicking occurred. This took place, the researchers learned, in the minor groove of a specific DNA sequence on the plasmid.

“We realized that a compound that could block this groove, prevent the NES loops from attaching and inhibit the cleaving of the plasmid DNA into single strands could potentially stop conjugal transfer of drug resistance altogether,” Edwards says.

To test their theory in the laboratory, the researchers used a Hoechst compound – a blue fluorescent dye used to stain DNA – that could bind to the minor groove. As predicted, blocking the grove prevented nicking of the plasmid DNA sequence.

Redinbo says that this “proof of concept” experiment suggests that the same inhibition might be possible in vivo. “Perhaps by targeting the DNA minor groove, we might make antibiotics more effective against VRSA and other drug-resistant bacteria,” he says.

This news release was prepared for the American Crystallographic Association (ACA) by the American Institute of Physics (AIP).

MORE INFORMATION ABOUT THE 2012 ACA MEETINGThe ACA is the largest professional society for crystallography in the United States, and this is its main meeting. All scientific sessions, workshops, poster sessions, and events will be held at the Westin Waterfront Hotel in Boston, Mass.

USEFUL LINKS:
Main meeting website: http://www.amercrystalassn.org/2012-meeting-homepage
Meeting program: http://www.amercrystalassn.org/2012-tentative-program
Meeting abstracts: http://www.amercrystalassn.org/app/sessions
Exhibits: http://www.amercrystalassn.org/2012-exhibits
ABOUT ACA
The American Crystallographic Association (ACA) was founded in 1949 through a merger of the American Society for X-Ray and Electron Diffraction (ASXRED) and the Crystallographic Society of America (CSA). The objective of the ACA is to promote interactions among scientists who study the structure of matter at atomic (or near atomic) resolution. These interactions will advance experimental and computational aspects of crystallography and diffraction. They will also promote the study of the arrangements of atoms and molecules in matter and the nature of the forces that both control and result from them.

Catherine Meyers | Newswise Science News
Further information:
http://www.aip.org
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>