Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel genetic mechanism of fatty liver disease in obese children

27.03.2012
Obese youths with particular genetic variants may be more prone to fatty liver disease, a leading cause of chronic liver disease in children and adolescents in industrialized countries, according to new findings by Yale School of Medicine researchers.

The study, which focused on three ethnic groups, is published in the March issue of the journal Hepatology.

Led by Nicola Santoro, M.D., associate research scientist in the Department of Pediatrics at Yale School of Medicine, the authors measured the hepatic, or liver, fat content of children using magnetic resonance imaging. The study included 181 Caucasian, 139 African-American and 135 Hispanic children who were, on average, age 13.

"We observed that a common genetic variant known as Patatin-like phospholipase domain containing protein-3 (PNPLA3) working with a regulatory protein called glucokinase (GCKR), was associated with increased triglycerides, very low-density lipoproteins levels, and fatty liver," said Santoro.

Santoro explained that his observations could help unravel the genetic mechanisms that contribute to liver fat metabolism. "This may drive the decisions about future drug targets to treat hypertriglyceridemia and non-alcoholic fatty liver disease," he said.

Childhood obesity is a global health concern. Experts say nonalcoholic fatty liver disease is now the leading cause of chronic liver disease in children and adolescents in industrialized countries.

"Our findings confirm that obese youths with genetic variants in the GCKR and PNPLA3 genes may be more susceptible to fatty liver disease," said Santoro, who is cautious about automatically extending this observation to the overall population.

"Our data refer to a population of obese children and adolescents," he said. "I think that further studies in a larger sample size involving lean subjects and adults may help to further define in more details these associations."

Other authors on the study included Clarence K. Zhang, Hongyu Zhao, Andrew J. Pakstis, Grace Kim, Romy Kursawe, Daniel J. Dykas, Allen E. Bale, Cosimo Giannini, Bridget Pierpont, Melissa M. Shaw, Leif Groop, and Sonia Caprio.

The work was also funded, in part, by the Yale Clinical and Translational Science Award grant from the National Center for Research Resources at the National Institutes of Health.
Citation: Hepatology Vol. 55, No. 3 (March 2012)
http://onlinelibrary.wiley.com/doi/10.1002/hep.24806/abstract.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Hepatology March PNPLA3 fatty liver genetic mechanism genetic variant liver disease

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>