Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers unravel genetic mechanism of fatty liver disease in obese children

Obese youths with particular genetic variants may be more prone to fatty liver disease, a leading cause of chronic liver disease in children and adolescents in industrialized countries, according to new findings by Yale School of Medicine researchers.

The study, which focused on three ethnic groups, is published in the March issue of the journal Hepatology.

Led by Nicola Santoro, M.D., associate research scientist in the Department of Pediatrics at Yale School of Medicine, the authors measured the hepatic, or liver, fat content of children using magnetic resonance imaging. The study included 181 Caucasian, 139 African-American and 135 Hispanic children who were, on average, age 13.

"We observed that a common genetic variant known as Patatin-like phospholipase domain containing protein-3 (PNPLA3) working with a regulatory protein called glucokinase (GCKR), was associated with increased triglycerides, very low-density lipoproteins levels, and fatty liver," said Santoro.

Santoro explained that his observations could help unravel the genetic mechanisms that contribute to liver fat metabolism. "This may drive the decisions about future drug targets to treat hypertriglyceridemia and non-alcoholic fatty liver disease," he said.

Childhood obesity is a global health concern. Experts say nonalcoholic fatty liver disease is now the leading cause of chronic liver disease in children and adolescents in industrialized countries.

"Our findings confirm that obese youths with genetic variants in the GCKR and PNPLA3 genes may be more susceptible to fatty liver disease," said Santoro, who is cautious about automatically extending this observation to the overall population.

"Our data refer to a population of obese children and adolescents," he said. "I think that further studies in a larger sample size involving lean subjects and adults may help to further define in more details these associations."

Other authors on the study included Clarence K. Zhang, Hongyu Zhao, Andrew J. Pakstis, Grace Kim, Romy Kursawe, Daniel J. Dykas, Allen E. Bale, Cosimo Giannini, Bridget Pierpont, Melissa M. Shaw, Leif Groop, and Sonia Caprio.

The work was also funded, in part, by the Yale Clinical and Translational Science Award grant from the National Center for Research Resources at the National Institutes of Health.
Citation: Hepatology Vol. 55, No. 3 (March 2012)

Karen N. Peart | EurekAlert!
Further information:

Further reports about: Hepatology March PNPLA3 fatty liver genetic mechanism genetic variant liver disease

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

Scientists discover particles similar to Majorana fermions

25.10.2016 | Physics and Astronomy

Phenotype at the push of a button

25.10.2016 | Life Sciences

More VideoLinks >>>