Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock secret to mysterious movement disorder

25.11.2011
Neurodegenerative diseases represent one of the greatest challenges in our aging society. Yet research into these illnesses is difficult because of the limited availability of human brain tissue.

Fortunately, scientists at the Life & Brain Research Center and the Clinic for Neurology at the University of Bonn have discovered a way to work around the problem. By taking skin cells from patients with a genetic movement disorder and reprogramming them into so-called induced pluripotent stem cells, researchers were able to create functional neurons that allowed them to investigate the causes of the disease. Their results will be published in the journal Nature.

The focus of the Bonn study is Machado-Joseph disease, which affects people’s ability to coordinate movement. First identified among Portuguese descendants living on the Azores, today it represents the most frequent dominantly inherited cerebellar ataxia in Germany. Most patients first develop symptoms, which include difficulty walking and other neurological difficulties, between the ages of 20 and 40. The cause of the disorder is a repeating sequence in the ATXN3 gene, which causes build-up of the Ataxin protein, damaging neurons in the brain. Before the study, no one knew why the disease affected only nerve cells and what triggered the abnormal protein build-up.

“Master Cells” derived from patient skin samples

To study the disease process on a molecular level, the stem cell researcher Dr. Oliver Brüstle and his team at the University of Bonn’s Institute for Reconstructive Neurobiology derived induced pluripotent stem cells (iPS cells) from small samples of patient skin. iPS cells are cells restored to their early, undifferentiated state. Once “reprogrammed,” these “master” cells divide continuously and can transform into any cell of the body. In a subsequent step, Brüstle and his team converted iPS cells into brain stem cells, creating an ever-ready supply of neurons for their investigations.

A special feature of the neurons is that they stem from affected patients. Carrying the same genetic mutations as the patients, these neurons can serve as a cellular model for Machado-Joseph disease. “This method allows us to investigate diseased cells which we otherwise couldn’t access, almost as if we had put the patient’s brain in a Petri dish,” says Dr. Philipp Koch, a long-time colleague of Brüstle’s and one of the study’s primary authors. Together with Dr. Peter Breuer of the Clinic for Neurology at Bonn’s University Hospital, Koch sent electrical currents through the cultured neurons. The researchers showed that the formation of protein aggregate has a direct relationship with a neuron’s electrical activity. “Playing a key role is the enzyme calpain, which is activated by the increased calcium levels in stimulated neurons,” says Breuer. “This newly discovered mechanism explains why Machado-Joseph disease only affects neurons,” Brüstle explains.

Reprogramed neurons as test objects for new drugs

“The study shows the potential of this special class of stem cells for neurological research,” says Prof. Dr. Thomas Klockgether, the clinical director of the German Center for Neurodegenerative Diseases (DZNE) and director of the Clinic for Neurology at the Bonn’s University Hospital. Klockgether’s team closely collaborated with Brüstle and his researchers. For Brüstle, this was reason enough to start thinking about new organizational structures: “We need interdisciplinary departments in which scientists from stem cell biology and from molecular pathology work side by side.” Prof. Dr. Dr. Pierluigi Nicotera, the scientific director and chairman of the executive board of DZNE, endorses this view. “Cooperative structures are of great interest to DZNE,” he stresses. “Reprogramed stem cells show enormous potential for our understanding of the pathology of neurodegenerative diseases.”

In the future, Brüstle and his colleagues from the Life & Brain Research Center plan to use reprogrammed neurons to develop treatments for neurological diseases.

Publication:
Koch, P., P. Breuer, M. Peitz, J. Jungverdorben, J. Kesavan, D. Poppe, J. Doerr, J. Ladewig, J. Mertens, T. Tüting, P. Hoffmann, T. Klockgether, B. O. Evert, U. Wüllner, O. Brüstle (2011): Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature DOI: 10.1038/nature10671
Contact:
Dr. Oliver Brüstle
Institute for Reconstructive Neurobiology
LIFE & BRAIN Center
University of Bonn
Tel: +49 (0) 228/6885-500
Email: brustle(at)uni-bonn.de

Daniel Bayer | idw
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>