Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unfold new details about a powerful protein

10.10.2014

Using X-rays and neutron beams, a team of researchers from the University of California, San Diego School of Medicine, University of Utah and Oak Ridge National Laboratory have teased out new information about Protein Kinase A (PKA), a ubiquitous master switch that helps regulate fundamental cellular functions like energy consumption and interactions with hormones, neurotransmitters and drugs.

"Mutations in PKA can lead to a variety of different human diseases, including cancers, metabolic and cardiovascular diseases and diseases involving the brain and nervous system," said senior author Susan Taylor, PhD, professor of chemistry, biochemistry and pharmacology at UC San Diego and international authority on PKA. "Developing treatments and cures for these diseases depends upon knowing how the switch works."

Writing in the October 10 issue of the Journal of Biological Chemistry, Taylor and colleagues focused on one of four forms of PKA called "II-beta," which is found mostly in the brain and in fat, where it may play an important role in obesity and diet-induced insulin-resistance associated with type 2 diabetes.

All forms of PKA are controlled by a signaling molecule called cyclic AMP or cAMP. Many cellular functions are based upon changing amounts of cAMP within cells. PKA is the molecular sensor for cAMP, modulating cell activity according to cAMP levels.

The scientists investigated which parts of the II-beta protein were needed to determine its overall shape, internal architecture and ability to change shape – factors that dictate function. II-beta is very compact when inactive but extends and separates into subunits when it senses cAMP.

"A key question regarding the architecture of the II-beta was whether both of its cAMP-sensing mechanisms were needed for the unique changes in shape that it undergoes with cAMP," said first author Donald K. Blumenthal, PhD, associate professor of pharmacology and toxicology at the University of Utah College of Pharmacy.

Researchers removed one of II-beta's cAMP sensors and then documented its ability to change shape in response to cAMP, using small-angle X-ray and advanced neutron scattering imaging technologies at Oak Ridge's High Flux Isotope Reactor in Tennessee. They found the protein could still change shape with just one sensor and that its internal architecture remained similar to II-beta protein with both its cAMP sensors.

The findings further narrow and define the key components of II-beta and identify new regions for further investigation. Taylor said the collaborative, multi-team effort also demonstrated the importance of using different techniques in an iterative way to unravel the dynamic properties of complex systems.

###

Co-authors include Jeffrey Copps, Eric V. Smith-Nguyen and Ping Zhang, UCSD Department of Chemistry and Biochemistry and Howard Hughes Medical Institute; and William T. Heller, Oak Ridge National Laboratory.

Funding support for this research came, in part, from the U.S. Department of Energy and the National Institutes of Health (grant GM34921).

Scott LaFee | Eurek Alert!
Further information:
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>