Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unfold new details about a powerful protein

10.10.2014

Using X-rays and neutron beams, a team of researchers from the University of California, San Diego School of Medicine, University of Utah and Oak Ridge National Laboratory have teased out new information about Protein Kinase A (PKA), a ubiquitous master switch that helps regulate fundamental cellular functions like energy consumption and interactions with hormones, neurotransmitters and drugs.

"Mutations in PKA can lead to a variety of different human diseases, including cancers, metabolic and cardiovascular diseases and diseases involving the brain and nervous system," said senior author Susan Taylor, PhD, professor of chemistry, biochemistry and pharmacology at UC San Diego and international authority on PKA. "Developing treatments and cures for these diseases depends upon knowing how the switch works."

Writing in the October 10 issue of the Journal of Biological Chemistry, Taylor and colleagues focused on one of four forms of PKA called "II-beta," which is found mostly in the brain and in fat, where it may play an important role in obesity and diet-induced insulin-resistance associated with type 2 diabetes.

All forms of PKA are controlled by a signaling molecule called cyclic AMP or cAMP. Many cellular functions are based upon changing amounts of cAMP within cells. PKA is the molecular sensor for cAMP, modulating cell activity according to cAMP levels.

The scientists investigated which parts of the II-beta protein were needed to determine its overall shape, internal architecture and ability to change shape – factors that dictate function. II-beta is very compact when inactive but extends and separates into subunits when it senses cAMP.

"A key question regarding the architecture of the II-beta was whether both of its cAMP-sensing mechanisms were needed for the unique changes in shape that it undergoes with cAMP," said first author Donald K. Blumenthal, PhD, associate professor of pharmacology and toxicology at the University of Utah College of Pharmacy.

Researchers removed one of II-beta's cAMP sensors and then documented its ability to change shape in response to cAMP, using small-angle X-ray and advanced neutron scattering imaging technologies at Oak Ridge's High Flux Isotope Reactor in Tennessee. They found the protein could still change shape with just one sensor and that its internal architecture remained similar to II-beta protein with both its cAMP sensors.

The findings further narrow and define the key components of II-beta and identify new regions for further investigation. Taylor said the collaborative, multi-team effort also demonstrated the importance of using different techniques in an iterative way to unravel the dynamic properties of complex systems.

###

Co-authors include Jeffrey Copps, Eric V. Smith-Nguyen and Ping Zhang, UCSD Department of Chemistry and Biochemistry and Howard Hughes Medical Institute; and William T. Heller, Oak Ridge National Laboratory.

Funding support for this research came, in part, from the U.S. Department of Energy and the National Institutes of Health (grant GM34921).

Scott LaFee | Eurek Alert!
Further information:
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>