Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover steps in synapse building, pruning

17.11.2011
Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant Professor Zhong-wei Zhang, Ph.D., have discovered a factor in synapse-building, also showing that the building and pruning processes occur independent of each other.

Mammals are born with functioning but not-yet-developed brains. After birth, external stimuli and internal programs continue to shape the connections between neurons, known as synapses, and the formation of networks of synapses known as neuronal circuits.

Some grow stronger, some grow weaker, redundant connections are eliminated, and so on. Such "plasticity," the ongoing refinement of neural connections and networks, continues throughout life, albeit more subtly with time and maturation.

Much about plasticity remains unknown. How the neural circuits are modified, what controls the modification, the mechanics of strengthening or eliminating specific synapses and much more are subjects of ongoing research. Besides gaining a better picture of normal brain development, scientists seek to understand the errors in synapse building and pruning that are associated with autism, mental retardation and schizophrenia.

Zhang and colleagues investigated a major type of synapse in the brain (called the glutamatergic synapse) that undergoes rapid refinement soon after birth. What they discovered is that these synapses are strengthened through the addition of a particular kind of glutamate receptors, beginning about a week after birth for mice. Notably, sensory deprivation disrupts the strengthening of the synapses, highlighting the role of early experience in synapse building.

In a somewhat surprising finding, the Zhang lab also discovered that the elimination of redundant synapses was not dependent on the other synapses' being strengthened. Since synaptic strengthening usually precedes removal of redundant synapses, it was not known if such elimination is dependent on the prior strengthening. In mice lacking the receptor, which prevented significant strengthening of synaptic connections, redundant synapses were eliminated as usual.

The Jackson Laboratory is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, Calif., a planned facility in Farmington, Conn., and a total staff of about 1,400. Its mission is to discover the genetic basis for preventing, treating and curing human disease, and to enable research and education for the global biomedical community.

Wang et al.: Elimination of redundant synaptic inputs in the absence of synaptic strengthening. Journal of Neuroscience, Nov. 16, 2011, DOI:10.1523/JNEUROSCI.4569-11.2011

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>