Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover How Poxviruses Such as Smallpox Evolve Rapidly -- Despite Low Mutation Rates

20.08.2012
Poxviruses, a group of DNA-containing viruses that includes smallpox, are responsible for a wide range of diseases in humans and animals. They are highly virulent and able to cross species barriers, yet how they do so has been largely a mystery because of their low mutation rates.

While smallpox was considered officially eradicated by the World Health Organization in 1980, concerns about its use as a bioterrorism agent – and the finding that other poxviruses, such as monkeypox, can be transmitted from animals to humans – have spurred renewed interest in understanding how they replicate. Having this information in hand could lead to the development of better antiviral strategies.

New research from scientists at Fred Hutchinson Cancer Research Center and collaborating institutions has uncovered how poxviruses evolve to rapidly adapt against host defenses – despite their low mutation rates.

The discovery provides new insight into how large, double-stranded DNA viruses evade host immunity and become drug resistant, and it has particular implications for understanding the mechanisms of infectious-disease transmission between animals and humans.

Senior author Harmit S. Malik, Ph.D., a member of the Hutchinson Center’s Basic Sciences Division, and first author Nels C. Elde, Ph.D., a former postdoctoral researcher in Malik’s lab, describe their findings online ahead of the Aug. 17 print issue of Cell.

“Poxviruses encode a variety of genes that help them to counter host immune defenses and promote infection,” said Elde, now an assistant professor of human genetics at the University of Utah School of Medicine. “Despite ample evidence that the poxvirus genome can undergo adaptive changes to overcome evolving host defenses, we still don’t know that much about the mechanisms involved in that adaptation.”

To determine the mechanisms of adaptation, Elde, Malik and colleagues conducted an experiment in cell culture using vaccinia virus, the type of poxvirus used in the smallpox vaccine, to mimic viral adaptation and evolution as it occurs in nature.

Previous research had demonstrated that a host-defense protein called protein kinase R (PKR) is a major hurdle to poxvirus infection. In response, poxviruses have evolved to overcome PKR by encoding two genes, K3L and E3L, which thwart host-defense mechanisms that normally prevent viral infection.

The team studied how vaccinia virus, when altered to delete the E3L gene, evolved to successfully replicate in the presence of human PKR.

“Dramatically, serial propagation of this ‘weaker’ virus rapidly resulted in strains that became much more successful at replicating in human cells,” said Malik, who is also an Early Career Scientist of the Howard Hughes Medical Institute.

Closer examination of their mode of adaptation revealed that the virus was quickly able to defeat PKR by selectively increasing the number of copies of the K3L gene in its genome.

Malik likened this rapid adaptation to the expansion of the bellows of a musical accordion. “As the K3L copy number increased in subsequent rounds of replication, so did expression of the K3L protein and subsequent inhibition of the immune response,” he said. This showed that viruses that can quickly expand their genome have an immediate evolutionary advantage over those that cannot.

In a further extension of the accordion analogy, in addition to observing rapid gene expansion in the E3L-deficient strain of vaccinia, the researchers also observed that the virus contracted after acquiring an adaptive mutation, swapping a beneficial mutation for a smaller genomic footprint.

“Our studies suggest that despite their transient nature, gene expansions may provide a potent means of adaptation in poxviruses, allowing them to survive either immune or pharmacological challenges,” Malik said. “Recognizing the means by which they undergo this expansion may provide more effective antiviral strategies against these and related important pathogens.”

The National Institutes of Health, the National Science Foundation, the Howard Hughes Medical Institute and the Life Sciences Research Foundation funded the research. In addition to researchers at the Hutchinson Center and University of Utah School of Medicine, the study also involved collaborators at the University of Washington School of Medicine.

Note for media only: To obtain a copy of the Cell paper, “Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses,” please visit press@cell.com.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit www.fhcrc.org.

Kristen Woodward | Newswise Science News
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>