Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover new knowledge about our intestines

07.07.2014

Researchers from DTU Systems Biology have mapped 500 previously unknown microorganisms in human intestinal flora as well as 800 also unknown bacterial viruses (also called bacteriophages) which attack intestinal bacteria.

To map the microorganisms, the researchers have developed a new principle for analysing DNA sequence data, which they have named the co-abundance principle. A principle which basically assumes that different pieces of DNA from the same organism will occur in the same amount in a sample, and that this amount will vary over a series of samples.

"Using our method, researchers are now able to identify and collect genomes from previously unknown microorganisms in even highly complex microbial societies. This provides us with an overview we have not enjoyed previously," says Professor Søren Brunak who has co-headed the study together with Associate Professor Henrik Bjørn Nielsen.

So far, 200-300 intestinal bacterial species have been mapped. Now, the number will be more than doubled, which could significantly improve our understanding and treatment of a large number of diseases such as type 2 diabetes, asthma and obesity.

Viruses—not antimicrobial agents.

The two researchers have also studied the mutual relations between bacteria and viruses.

"Our study tells us which bacterial viruses attack which bacteria, something which has a noticeable effect on whether the attacked bacteria will survive in the intestinal system in the long term," says Henrik Bjørn Nielsen

Previously, bacteria were studied individually in the laboratory, but researchers are becoming increasingly aware that in order to understand the intestinal flora, you need to look at the interaction between the many different bacteria found.

And when we know the intestinal bacteria interactions, we can potentially develop a more selective way to treat a number of diseases.

"Ideally we will be able to add or remove specific bacteria in the intestinal system and in this way induce a healthier intestinal flora," says Søren Brunak.

It is particularly interesting in relation to the increasing problem of antimicrobial resistance which many consider a real threat to global health.

"We have previously been experimenting with using bacteria and viruses to fight disease, but this was shelved because antimicrobial agents have been so effective in combating many infectious diseases. If we can learn more about who attacks who, then bacterial viruses could be a viable alternative to antimicrobial agents. It is therefore extremely important that we now can identify and describe far more relations between bacteria and the viruses that attack them," says Henrik Bjørn Nielsen.

###

The research findings will be published in Nature Biotechnology.

Henrik Bjørn Nielsen | Eurek Alert!

Further reports about: DNA antimicrobial bacteria bacterial diseases intestines microorganisms viruses

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>