Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover new knowledge about our intestines

07.07.2014

Researchers from DTU Systems Biology have mapped 500 previously unknown microorganisms in human intestinal flora as well as 800 also unknown bacterial viruses (also called bacteriophages) which attack intestinal bacteria.

To map the microorganisms, the researchers have developed a new principle for analysing DNA sequence data, which they have named the co-abundance principle. A principle which basically assumes that different pieces of DNA from the same organism will occur in the same amount in a sample, and that this amount will vary over a series of samples.

"Using our method, researchers are now able to identify and collect genomes from previously unknown microorganisms in even highly complex microbial societies. This provides us with an overview we have not enjoyed previously," says Professor Søren Brunak who has co-headed the study together with Associate Professor Henrik Bjørn Nielsen.

So far, 200-300 intestinal bacterial species have been mapped. Now, the number will be more than doubled, which could significantly improve our understanding and treatment of a large number of diseases such as type 2 diabetes, asthma and obesity.

Viruses—not antimicrobial agents.

The two researchers have also studied the mutual relations between bacteria and viruses.

"Our study tells us which bacterial viruses attack which bacteria, something which has a noticeable effect on whether the attacked bacteria will survive in the intestinal system in the long term," says Henrik Bjørn Nielsen

Previously, bacteria were studied individually in the laboratory, but researchers are becoming increasingly aware that in order to understand the intestinal flora, you need to look at the interaction between the many different bacteria found.

And when we know the intestinal bacteria interactions, we can potentially develop a more selective way to treat a number of diseases.

"Ideally we will be able to add or remove specific bacteria in the intestinal system and in this way induce a healthier intestinal flora," says Søren Brunak.

It is particularly interesting in relation to the increasing problem of antimicrobial resistance which many consider a real threat to global health.

"We have previously been experimenting with using bacteria and viruses to fight disease, but this was shelved because antimicrobial agents have been so effective in combating many infectious diseases. If we can learn more about who attacks who, then bacterial viruses could be a viable alternative to antimicrobial agents. It is therefore extremely important that we now can identify and describe far more relations between bacteria and the viruses that attack them," says Henrik Bjørn Nielsen.

###

The research findings will be published in Nature Biotechnology.

Henrik Bjørn Nielsen | Eurek Alert!

Further reports about: DNA antimicrobial bacteria bacterial diseases intestines microorganisms viruses

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>