Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover molecule that keeps pathogens like salmonella in check

25.08.2008
Scientists at UT Southwestern Medical Center have found a potential new way to stop the bacteria that cause gastroenteritis, tularemia and severe diarrhea from making people sick.

The researchers found that the molecule LED209 interferes with the biochemical signals that cause bacteria in our bodies to release toxins.

“What we have here is a completely novel approach to combating illness,” said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of a study available online today and in a future issue of Science.

Though many antimicrobial drugs are already available, new ones are needed to combat the increasing microbial resistance to antibiotics. In addition, treating some bacterial infections with conventional antibiotics can cause the release of more toxins and may worsen disease outcome.

Scientists have known for decades that millions of potentially harmful bacteria exist in the human body, awaiting a signal that it’s time to release their toxins. Without those signals, the bacteria pass through the digestive tract without infecting cells. What hasn’t been identified is how to prevent the release of those toxins, a process that involves activating virulence genes in the bacteria.

In the new study, UT Southwestern researchers describe how LED209 blocks the bacterial receptor for these signals. In 2006, the UT Southwestern researchers were the first to identify the receptor QseC sensor kinase, which is found in the membrane of a diarrhea-causing strain of Escherichia coli. This receptor receives signals from human flora and hormones in the intestine that cause the bacteria to initiate infection.

In studies in vitro, Dr. Sperandio and her colleagues found that LED209 blocked the QseC sensors in E coli, Salmonella and Francisella tularensis bacteria, preventing them from expressing virulence traits. Using mice models of infection, the researchers also showed that LED209 blocks pathogenesis of Salmonella and F tularensis, preventing them from causing disease in these animals.

Though the researchers limited the study to three pathogens, they believe drugs that target QseC could have a broader spectrum because the sensor exists in at least 25 important animal and plant pathogens including Erwinia, which causes plant rot; Legionella pneumophila, which causes Legionnaires’ disease; and Haemophilus influenzae, which causes lung infections.

Unlike conventional antibiotics, which work by killing bacteria, LED209 allows the pathogen to grow but not become virulent and make the host sick. Dr. Sperandio said killing the bacteria or inhibiting their growth just “angers” some bacteria and causes them to release toxins.

“The sensors in bacteria are waiting for the right signal to initiate the expression of virulent genes,” she said. “Using LED209, we blocked those sensing mechanisms and basically tricked the bacteria to not recognize that they were within the host. When we did that, the bacterial pathogens could not effectively cause disease in the treated animals.”

Allowing the pathogen to survive also makes it less likely to develop resistance to medical treatments.

“What makes this current study unique is that we showed the drug working in three different pathogens,” Dr. Sperandio said. “Prior studies generally focused on one.”

In early 2008, UT Southwestern received a five-year, $6.5 million grant from the National Institute of Allergy and Infectious Diseases to develop a new antimicrobial compound to target bacterial pathogens such as Salmonella, E coli and F tularensis. Dr. Sperandio is the principal investigator.

“Only a few new antibiotics have reached the market in recent years,” Dr. Sperandio said. “Because LED209 has never been used as an antibiotic, it’s a completely different type of drug. In addition, its target, QseC, is also different from the current antimicrobial drug targets. This study demonstrates that LED209 has promise in fighting at least three pathogens and likely many more.”

Identifying LED209 was accomplished by using a high throughput screen of 150,000 compounds in UT Southwestern’s Small Molecular Library. The screening process was set up to find molecules that wouldn’t activate the virulence genes in a strain of E coli known as enterohemorrhagic E coli 0157:H7, or EHEC. Additional rounds of screening resulted in a pool of 75 potential inhibitors, from which LED209 was selected partly because of its potency.

The team’s next step is to understand further LED209’s structure and how it functions. The researchers plan to modify the drug to develop customized formulations.

“What we have right now works really well for systemic infections and it’s very potent, but we also need non-absorbable molecules to treat noninvasive pathogens such as EHEC, which stays in the intestine,” Dr. Sperandio said.

Other UT Southwestern researchers involved in this research were Dr. Noelle Williams, assistant professor of biochemistry; Dr. Ron Taussig, associate professor of pharmacology; Dr. Michael Roth, professor of biochemistry; Dr. John R. Falck, professor of biochemistry and pharmacology; Drs. Cristiano Moreira and Jason Huntley, both postdoctoral researchers in microbiology; Dr. Run Li, postdoctoral research in biochemistry; Dr. Shuguang Wei, senior research scientist in biochemistry; Maggy Fina, senior research associate in pharmacology; and student research assistants Nicola Reading and David Hughes. Dr. David Rasko, former assistant professor of microbiology at UT Southwestern, was the lead author. Drs. Matthew Waldor and Jennifer Ritchie from Brigham and Women’s Hospital also participated.

The work was funded by the National Institutes of Health, the Ellison Medical Foundation, Burroughs Wellcome Fund, the Welch Foundation and UT Southwestern’s High Impact/High Risk Research Program. UT Southwestern has filed a U.S. patent application on this technology.

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>