Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Molecule Keeps Pathogens Like Salmonella in Check

22.08.2008
Scientists at UT Southwestern Medical Center have found a potential new way to stop the bacteria that cause gastroenteritis, tularemia and severe diarrhea from making people sick.

The researchers found that the molecule LED209 interferes with the biochemical signals that cause bacteria in our bodies to release toxins.

“What we have here is a completely novel approach to combating illness,” said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of a study available online today and in a future issue of Science.

Though many antimicrobial drugs are already available, new ones are needed to combat the increasing microbial resistance to antibiotics. In addition, treating some bacterial infections with conventional antibiotics can cause the release of more toxins and may worsen disease outcome.

Scientists have known for decades that millions of potentially harmful bacteria exist in the human body, awaiting a signal that it’s time to release their toxins. Without those signals, the bacteria pass through the digestive tract without infecting cells. What hasn’t been identified is how to prevent the release of those toxins, a process that involves activating virulence genes in the bacteria.

In the new study, UT Southwestern researchers describe how LED209 blocks the bacterial receptor for these signals. In 2006, the UT Southwestern researchers were the first to identify the receptor QseC sensor kinase, which is found in the membrane of a diarrhea-causing strain of Escherichia coli. This receptor receives signals from human flora and hormones in the intestine that cause the bacteria to initiate infection.

In studies in vitro, Dr. Sperandio and her colleagues found that LED209 blocked the QseC sensors in E coli, Salmonella and Francisella tularensis bacteria, preventing them from expressing virulence traits. Using mice models of infection, the researchers also showed that LED209 blocks pathogenesis of Salmonella and F tularensis, preventing them from causing disease in these animals.

Though the researchers limited the study to three pathogens, they believe drugs that target QseC could have a broader spectrum because the sensor exists in at least 25 important animal and plant pathogens including Erwinia, which causes plant rot; Legionella pneumophila, which causes Legionnaires’ disease; and Haemophilus influenzae, which causes lung infections.

Unlike conventional antibiotics, which work by killing bacteria, LED209 allows the pathogen to grow but not become virulent and make the host sick. Dr. Sperandio said killing the bacteria or inhibiting their growth just “angers” some bacteria and causes them to release toxins.

“The sensors in bacteria are waiting for the right signal to initiate the expression of virulent genes,” she said. “Using LED209, we blocked those sensing mechanisms and basically tricked the bacteria to not recognize that they were within the host. When we did that, the bacterial pathogens could not effectively cause disease in the treated animals.”

Allowing the pathogen to survive also makes it less likely to develop resistance to medical treatments.

“What makes this current study unique is that we showed the drug working in three different pathogens,” Dr. Sperandio said. “Prior studies generally focused on one.”

In early 2008, UT Southwestern received a five-year, $6.5 million grant from the National Institute of Allergy and Infectious Diseases to develop a new antimicrobial compound to target bacterial pathogens such as Salmonella, E coli and F tularensis. Dr. Sperandio is the principal investigator.

“Only a few new antibiotics have reached the market in recent years,” Dr. Sperandio said. “Because LED209 has never been used as an antibiotic, it’s a completely different type of drug. In addition, its target, QseC, is also different from the current antimicrobial drug targets. This study demonstrates that LED209 has promise in fighting at least three pathogens and likely many more.”

Identifying LED209 was accomplished by using a high throughput screen of 150,000 compounds in UT Southwestern’s Small Molecular Library. The screening process was set up to find molecules that wouldn’t activate the virulence genes in a strain of E coli known as enterohemorrhagic E coli 0157:H7, or EHEC. Additional rounds of screening resulted in a pool of 75 potential inhibitors, from which LED209 was selected partly because of its potency.

The team’s next step is to understand further LED209’s structure and how it functions. The researchers plan to modify the drug to develop customized formulations.

“What we have right now works really well for systemic infections and it’s very potent, but we also need non-absorbable molecules to treat noninvasive pathogens such as EHEC, which stays in the intestine,” Dr. Sperandio said.

Other UT Southwestern researchers involved in this research were Dr. Noelle Williams, assistant professor of biochemistry; Dr. Ron Taussig, associate professor of pharmacology; Dr. Michael Roth, professor of biochemistry; Dr. John R. Falck, professor of biochemistry and pharmacology; Drs. Cristiano Moreira and Jason Huntley, both postdoctoral researchers in microbiology; Dr. Run Li, postdoctoral research in biochemistry; Dr. Shuguang Wei, senior research scientist in biochemistry; Maggy Fina, senior research associate in pharmacology; and student research assistants Nicola Reading and David Hughes. Dr. David Rasko, former assistant professor of microbiology at UT Southwestern, was the lead author. Drs. Matthew Waldor and Jennifer Ritchie from Brigham and Women’s Hospital also participated.

The work was funded by the National Institutes of Health, the Ellison Medical Foundation, Burroughs Wellcome Fund, the Welch Foundation and UT Southwestern’s High Impact/High Risk Research Program. UT Southwestern has filed a U.S. patent application on this technology.

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/findfac/professional/0,2356,50556,00.html

Further reports about: Biochemistry Coli LED209 Pathogen QseC Salmonelle Sperandio bacterial

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>