Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Uncover Molecule Keeps Pathogens Like Salmonella in Check

Scientists at UT Southwestern Medical Center have found a potential new way to stop the bacteria that cause gastroenteritis, tularemia and severe diarrhea from making people sick.

The researchers found that the molecule LED209 interferes with the biochemical signals that cause bacteria in our bodies to release toxins.

“What we have here is a completely novel approach to combating illness,” said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of a study available online today and in a future issue of Science.

Though many antimicrobial drugs are already available, new ones are needed to combat the increasing microbial resistance to antibiotics. In addition, treating some bacterial infections with conventional antibiotics can cause the release of more toxins and may worsen disease outcome.

Scientists have known for decades that millions of potentially harmful bacteria exist in the human body, awaiting a signal that it’s time to release their toxins. Without those signals, the bacteria pass through the digestive tract without infecting cells. What hasn’t been identified is how to prevent the release of those toxins, a process that involves activating virulence genes in the bacteria.

In the new study, UT Southwestern researchers describe how LED209 blocks the bacterial receptor for these signals. In 2006, the UT Southwestern researchers were the first to identify the receptor QseC sensor kinase, which is found in the membrane of a diarrhea-causing strain of Escherichia coli. This receptor receives signals from human flora and hormones in the intestine that cause the bacteria to initiate infection.

In studies in vitro, Dr. Sperandio and her colleagues found that LED209 blocked the QseC sensors in E coli, Salmonella and Francisella tularensis bacteria, preventing them from expressing virulence traits. Using mice models of infection, the researchers also showed that LED209 blocks pathogenesis of Salmonella and F tularensis, preventing them from causing disease in these animals.

Though the researchers limited the study to three pathogens, they believe drugs that target QseC could have a broader spectrum because the sensor exists in at least 25 important animal and plant pathogens including Erwinia, which causes plant rot; Legionella pneumophila, which causes Legionnaires’ disease; and Haemophilus influenzae, which causes lung infections.

Unlike conventional antibiotics, which work by killing bacteria, LED209 allows the pathogen to grow but not become virulent and make the host sick. Dr. Sperandio said killing the bacteria or inhibiting their growth just “angers” some bacteria and causes them to release toxins.

“The sensors in bacteria are waiting for the right signal to initiate the expression of virulent genes,” she said. “Using LED209, we blocked those sensing mechanisms and basically tricked the bacteria to not recognize that they were within the host. When we did that, the bacterial pathogens could not effectively cause disease in the treated animals.”

Allowing the pathogen to survive also makes it less likely to develop resistance to medical treatments.

“What makes this current study unique is that we showed the drug working in three different pathogens,” Dr. Sperandio said. “Prior studies generally focused on one.”

In early 2008, UT Southwestern received a five-year, $6.5 million grant from the National Institute of Allergy and Infectious Diseases to develop a new antimicrobial compound to target bacterial pathogens such as Salmonella, E coli and F tularensis. Dr. Sperandio is the principal investigator.

“Only a few new antibiotics have reached the market in recent years,” Dr. Sperandio said. “Because LED209 has never been used as an antibiotic, it’s a completely different type of drug. In addition, its target, QseC, is also different from the current antimicrobial drug targets. This study demonstrates that LED209 has promise in fighting at least three pathogens and likely many more.”

Identifying LED209 was accomplished by using a high throughput screen of 150,000 compounds in UT Southwestern’s Small Molecular Library. The screening process was set up to find molecules that wouldn’t activate the virulence genes in a strain of E coli known as enterohemorrhagic E coli 0157:H7, or EHEC. Additional rounds of screening resulted in a pool of 75 potential inhibitors, from which LED209 was selected partly because of its potency.

The team’s next step is to understand further LED209’s structure and how it functions. The researchers plan to modify the drug to develop customized formulations.

“What we have right now works really well for systemic infections and it’s very potent, but we also need non-absorbable molecules to treat noninvasive pathogens such as EHEC, which stays in the intestine,” Dr. Sperandio said.

Other UT Southwestern researchers involved in this research were Dr. Noelle Williams, assistant professor of biochemistry; Dr. Ron Taussig, associate professor of pharmacology; Dr. Michael Roth, professor of biochemistry; Dr. John R. Falck, professor of biochemistry and pharmacology; Drs. Cristiano Moreira and Jason Huntley, both postdoctoral researchers in microbiology; Dr. Run Li, postdoctoral research in biochemistry; Dr. Shuguang Wei, senior research scientist in biochemistry; Maggy Fina, senior research associate in pharmacology; and student research assistants Nicola Reading and David Hughes. Dr. David Rasko, former assistant professor of microbiology at UT Southwestern, was the lead author. Drs. Matthew Waldor and Jennifer Ritchie from Brigham and Women’s Hospital also participated.

The work was funded by the National Institutes of Health, the Ellison Medical Foundation, Burroughs Wellcome Fund, the Welch Foundation and UT Southwestern’s High Impact/High Risk Research Program. UT Southwestern has filed a U.S. patent application on this technology.

Kristen Holland Shear | Newswise Science News
Further information:,2356,50556,00.html

Further reports about: Biochemistry Coli LED209 Pathogen QseC Salmonelle Sperandio bacterial

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>