Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Uncover Molecule Keeps Pathogens Like Salmonella in Check

Scientists at UT Southwestern Medical Center have found a potential new way to stop the bacteria that cause gastroenteritis, tularemia and severe diarrhea from making people sick.

The researchers found that the molecule LED209 interferes with the biochemical signals that cause bacteria in our bodies to release toxins.

“What we have here is a completely novel approach to combating illness,” said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of a study available online today and in a future issue of Science.

Though many antimicrobial drugs are already available, new ones are needed to combat the increasing microbial resistance to antibiotics. In addition, treating some bacterial infections with conventional antibiotics can cause the release of more toxins and may worsen disease outcome.

Scientists have known for decades that millions of potentially harmful bacteria exist in the human body, awaiting a signal that it’s time to release their toxins. Without those signals, the bacteria pass through the digestive tract without infecting cells. What hasn’t been identified is how to prevent the release of those toxins, a process that involves activating virulence genes in the bacteria.

In the new study, UT Southwestern researchers describe how LED209 blocks the bacterial receptor for these signals. In 2006, the UT Southwestern researchers were the first to identify the receptor QseC sensor kinase, which is found in the membrane of a diarrhea-causing strain of Escherichia coli. This receptor receives signals from human flora and hormones in the intestine that cause the bacteria to initiate infection.

In studies in vitro, Dr. Sperandio and her colleagues found that LED209 blocked the QseC sensors in E coli, Salmonella and Francisella tularensis bacteria, preventing them from expressing virulence traits. Using mice models of infection, the researchers also showed that LED209 blocks pathogenesis of Salmonella and F tularensis, preventing them from causing disease in these animals.

Though the researchers limited the study to three pathogens, they believe drugs that target QseC could have a broader spectrum because the sensor exists in at least 25 important animal and plant pathogens including Erwinia, which causes plant rot; Legionella pneumophila, which causes Legionnaires’ disease; and Haemophilus influenzae, which causes lung infections.

Unlike conventional antibiotics, which work by killing bacteria, LED209 allows the pathogen to grow but not become virulent and make the host sick. Dr. Sperandio said killing the bacteria or inhibiting their growth just “angers” some bacteria and causes them to release toxins.

“The sensors in bacteria are waiting for the right signal to initiate the expression of virulent genes,” she said. “Using LED209, we blocked those sensing mechanisms and basically tricked the bacteria to not recognize that they were within the host. When we did that, the bacterial pathogens could not effectively cause disease in the treated animals.”

Allowing the pathogen to survive also makes it less likely to develop resistance to medical treatments.

“What makes this current study unique is that we showed the drug working in three different pathogens,” Dr. Sperandio said. “Prior studies generally focused on one.”

In early 2008, UT Southwestern received a five-year, $6.5 million grant from the National Institute of Allergy and Infectious Diseases to develop a new antimicrobial compound to target bacterial pathogens such as Salmonella, E coli and F tularensis. Dr. Sperandio is the principal investigator.

“Only a few new antibiotics have reached the market in recent years,” Dr. Sperandio said. “Because LED209 has never been used as an antibiotic, it’s a completely different type of drug. In addition, its target, QseC, is also different from the current antimicrobial drug targets. This study demonstrates that LED209 has promise in fighting at least three pathogens and likely many more.”

Identifying LED209 was accomplished by using a high throughput screen of 150,000 compounds in UT Southwestern’s Small Molecular Library. The screening process was set up to find molecules that wouldn’t activate the virulence genes in a strain of E coli known as enterohemorrhagic E coli 0157:H7, or EHEC. Additional rounds of screening resulted in a pool of 75 potential inhibitors, from which LED209 was selected partly because of its potency.

The team’s next step is to understand further LED209’s structure and how it functions. The researchers plan to modify the drug to develop customized formulations.

“What we have right now works really well for systemic infections and it’s very potent, but we also need non-absorbable molecules to treat noninvasive pathogens such as EHEC, which stays in the intestine,” Dr. Sperandio said.

Other UT Southwestern researchers involved in this research were Dr. Noelle Williams, assistant professor of biochemistry; Dr. Ron Taussig, associate professor of pharmacology; Dr. Michael Roth, professor of biochemistry; Dr. John R. Falck, professor of biochemistry and pharmacology; Drs. Cristiano Moreira and Jason Huntley, both postdoctoral researchers in microbiology; Dr. Run Li, postdoctoral research in biochemistry; Dr. Shuguang Wei, senior research scientist in biochemistry; Maggy Fina, senior research associate in pharmacology; and student research assistants Nicola Reading and David Hughes. Dr. David Rasko, former assistant professor of microbiology at UT Southwestern, was the lead author. Drs. Matthew Waldor and Jennifer Ritchie from Brigham and Women’s Hospital also participated.

The work was funded by the National Institutes of Health, the Ellison Medical Foundation, Burroughs Wellcome Fund, the Welch Foundation and UT Southwestern’s High Impact/High Risk Research Program. UT Southwestern has filed a U.S. patent application on this technology.

Kristen Holland Shear | Newswise Science News
Further information:,2356,50556,00.html

Further reports about: Biochemistry Coli LED209 Pathogen QseC Salmonelle Sperandio bacterial

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>