Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover genetic cause of childhood leukemia

09.09.2013
For the first time, a genetic link specific to risk of childhood leukemia has been identified, according to a team of researchers from Memorial Sloan-Kettering Cancer Center, St. Jude Children's Research Hospital, University of Washington, and other institutions. The discovery was reported online today in the journal Nature Genetics.

"We're in unchartered territory," said study author Kenneth Offit, MD, MPH, Chief of the Clinical Genetics Service at Memorial Sloan-Kettering. "At the very least this discovery gives us a new window into inherited causes of childhood leukemia. More immediately, testing for this mutation may allow affected families to prevent leukemia in future generations."

The mutation was first observed in a family treated at Memorial Sloan-Kettering of which several family members of different generations had been diagnosed with childhood acute lymphoblastic leukemia (ALL). A second, non-related, leukemia-prone family cared for at a different hospital was later found to have the same mutation. A series of experiments were conducted confirming that the observed mutation compromised the normal function of the gene, which may increase the risk of developing ALL.

The inherited genetic mutation is located in a gene called PAX5, which is known to play a role in the development of some B cell cancers, including ALL. PAX5, a transcription factor or "master gene," regulates the activity of several other genes and is essential for maintaining the identity and function of B cells. In all study participants, one of the two copies of the PAX5 gene was missing, leaving only the mutated version. The research continues as the researchers believe additional genetic factors played a role in the development of ALL in these patients.

ALL is the most common form of cancer in children, with 3,000 children and young adults being diagnosed each year in the United States.

Dr. Offit hopes that ongoing research will also determine what percentage of childhood ALL patients have the PAX5 mutation. Current estimates suggest that it is rare. Additionally, the newly discovered gene mutation may someday help scientists determine how to target transcription factors to treat other non-inherited forms of leukemia where the PAX5 mutation is present.

"With a better understanding of the genetic elements that induce cancer susceptibility, or drive cancer to grow, we can more precisely target therapy as well as potentially prevent cancer from occurring in the first place," added Dr. Offit.

In 1996, a similar study of cancer-prone families allowed Dr. Offit and his team to identify the most common mutation of BRCA2, associated with an increased risk of breast and ovarian cancer, and particularly common among individuals of Ashkenazi Jewish ancestry.

This research was supported by the Starr Cancer Research Initiative and by the National Institutes of Health under grant CA21765.

About Memorial Sloan-Kettering Cancer Center

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private cancer center with more than 125 years devoted to exceptional patient care, innovative research, and outstanding educational programs. We are one of 41 National Cancer Institute–designated Comprehensive Cancer Centers, with state-of-the-art science flourishing side by side with clinical studies and treatment.

The close collaboration between our physicians and scientists enables us to provide patients with the best care available as we work to discover more-effective strategies to prevent, control, and ultimately cure cancer in the future. Our education programs train future physicians and scientists, and the knowledge and experience they gain at Memorial Sloan-Kettering has an impact on cancer treatment and biomedical research around the world. For more information, go to http://www.mskcc.org.

Andrea Molinatti | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>