Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Fragile X Syndrome Gene’s Role in Shaping Brain

11.05.2010
Researchers at UT Southwestern Medical Center have discovered how the genetic mutation that causes Fragile X syndrome, the most common form of inherited mental retardation, interferes with the “pruning” of nerve connections in the brain. Their findings appear in the April 29 issue of Neuron.

Soon after birth, the still-developing brain of a mammal produces too many nerve connections that create “noise” in the nervous system. The brain finds it hard to process these signals, like a person trying to have a conversation at a loud party. But as the brain matures and learning takes place, some nerve connections naturally become stronger while others weaken and die, leading to an adult with a properly wired brain.

Fragile X is caused by a mutation in a single gene, Fmr1, on the X chromosome. The gene codes for a protein called FMRP, which plays a role in learning and memory but whose full function is unknown. The protein’s role in pruning nerve connections had been unclear.

“I think we’ve uncovered a core function for the gene involved in this disease, and if we can find other biochemical methods involved in nerve pruning, we might be able to help correct this,” said Dr. Kimberly Huber, associate professor of neuroscience at UT Southwestern and senior author of the study.

In the current study, Dr. Huber and her colleagues examined nerve cells isolated from mice that had been engineered to lack the Fmr1 gene and, therefore, did not produce FMRP protein. They then tested whether the lack of FMRP affected the functions of another protein called MEF2, which is known to be involved in pruning nerve connections.

The researchers found that nerve cells lacking FMRP were unable to respond to MEF2. Adding FMRP to the cells restored MEF2’s normal function.

“We were massively activating the MEF2 gene in the cell, and it did absolutely nothing without FMRP,” Dr. Huber said. Such an all-or-nothing requirement in a biochemical relationship is rare, she said.

The findings also raise questions about how the two proteins interact physically. MEF2 works in the nucleus of a cell, where it controls whether other genes are turned on or off. FMRP shuttles in and out of the cell’s nucleus and into its main body.

“This opens up new ideas about how processes in the cell’s nucleus, near its DNA, can affect the nerve connections, which are very far away at the other end of the cell,” Dr. Huber said. “We think MEF2 is making messenger RNA [ribonucleic acid], which translates the genetic code of the DNA, and FMRP is binding to the RNA and either transporting it to the nerve connections and/or controlling how the RNA makes protein.”

Further research will focus on the relationship between the proteins. For instance, one might directly control the other, or they might work together on a common target, Dr. Huber said.

“This work might not have clinical implications for quite a while,” she said. “The goal for us as scientists is to understand how these genes relate to mechanisms that control the development of nerve connections.”

Like other genetic diseases carried on the X chromosome, Fragile X syndrome strikes boys more often and more severely than girls. Girls have two X chromosomes, so a normal gene on one chromosome can mitigate the effects of the disease if the gene on the other X chromosome is abnormal. Boys, however, have only one X chromosome, so if they inherit an abnormal gene on the X chromosome, they have no protection.

Other UT Southwestern researchers involved in the study were lead author and former graduate student Brad Pfeiffer; Dr. Tong Zang, postdoctoral researcher in neuroscience; Dr. Julia Wilkerson, postdoctoral researcher in neuroscience; Dr. Makoto Taniguchi, postdoctoral researcher in psychiatry; Marina Maksimova, research assistant in neuroscience; Dr. Laura Smith, postdoctoral researcher in psychiatry; and Dr. Christopher Cowan, assistant professor of psychiatry.

The study was funded by the National Institutes of Health, Autism Speaks, the Whitehall Foundation and Simons Foundation.

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu

Further reports about: Brain DNA FMR1 Gene’s MEF2 RNA Syndrome Uncover X chromosome cell’s nucleus genetic disease nerve cell

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>