Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover clues to flu’s mechanisms

01.08.2014

Rice, Baylor scientists analyze how influenza-related proteins help infect cells

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.


The influenza hemagglutinin protein reconfigures itself as it targets host cells to infect them. Until new analysis by Rice University and Baylor College of Medicine researchers, nobody had been able to study the intermediate states of the protein-refolding process that may be vulnerable to treatment with drugs. (Credit: Jeffrey Noel/Rice University)

Their computer simulations may lead to new strategies to stop influenza, perhaps even a one-size-fits-all vaccine. The discovery detailed this week in the Proceedings of the National Academy of Sciences shows the path taken by hemagglutinin, a glycoprotein that rides the surface of the influenza virus, as it releases fusion peptides to invade a host cell.

The release mechanism has been the subject of many theories, but none have explained experimental observations as well as the new work led by biophysicist José Onuchic at Rice and biochemists Qinghua Wang at Baylor and Jianpeng Ma, who has a joint appointment at the two institutions. The Rice-Baylor team applied protein-folding algorithms developed by Onuchic and his colleagues to analyze how hemagglutinin reconfigures itself as it infects a cell.

... more about:
»NSF »Physics »X-ray »energy »flu »landscape »mechanisms »protein »structures

Hemagglutinin is completely folded at the start of the process of interest to researchers who study viral infection, Ma said. “It may be the only case known to human beings where a protein starts at a fixed point and literally completely refolds,” he said. Proteins are the molecular motors that spring from DNA and perform tasks essential to life, and they are the prime focus of study for Onuchic and his colleagues at Rice’s Center for Theoretical Biological Physics (CTBP). The researchers use their energy landscape theory to determine the path an unfolded strand of amino acids takes as it collapses into a final, functional protein.

That involves calculating the energetic preferences of every acid in the chain as well as the influence of the surrounding environment as folding progresses. When Ma met Onuchic a few years ago, he recognized an opportunity. “I told him there’s a very important feature of the viral system that would be ideal for his energy landscape approach.” Ma said. Researchers have long observed hemagglutinin’s initial and final structures through X-ray crystallography. But because the change happens so quickly, it has been impossible to capture an image of the glycoprotein in transit.

Ma said the key to stopping the flu could be to attack these intermediate structures. Energy landscape theory predicts how a protein will fold no matter how fast it happens. In the case of hemagglutinin, the unfolding and refolding happens in seconds. During the process, part of the protein “cracks” and releases fusion peptides. “The fusion peptides are the most important part of the molecule,” said Rice postdoctoral researcher and co-author Jeffrey Noel. “The hemagglutinin is attached to the viral membrane, and when these peptides are released, they embed themselves in the target cell’s membrane, creating a connection between the two.”

“The purpose of hemagglutinin is to poke a hole between the two membranes,” Ma said. “They have to fuse so the genetic material will be injected into the human cell.” Hemagglutinin is recognized by polysaccharide receptors on host cells and is absorbed when the cells engulf it. Initially, part of the protein forms a cap that protects the segments inside. Acidic conditions cause the cap to fall off, and the protein begins to reconfigure itself. “The release of the fusion peptide, which is initially hidden inside hemagglutinin, is triggered by that giant conformational change,” Ma said. “When the cap is on, the whole protein is stable,” Noel said.

“What we see in the simulation is that the hydrophobic pocket where the fusion peptides are buried is very unstable and wants to crack as soon as the cap comes off.” By using the experimental structural information from X-ray crystallography to approximate the full energy landscape of hemagglutinin, the researchers can now capture a rough picture of the steps involved in its reconfiguration, including the point at which the peptides are released. “We now, for the first time, have mapped out the entire process, going from state A to state B, and the energetics along the way,” Ma said.

Ma said frequent mutations to the cap help the virus avoid antibodies; this is the reason people need flu shots every year. But he suspects the inner part of the protein is more highly conserved. “We’re targeting the part that the virus cannot afford to change. Therefore, it provides more hope for developing therapeutic agents,” he said. Such agents could lead to a universal flu vaccine that would last a lifetime. He said the membrane fusion mechanism is widely shared among many biological systems, which makes influenza a good model for studying other diseases.

“HIV has one. Ebola has one. And it’s also shared by intercell transport in the nervous system,” Ma said. He noted the work could not have been done without CTBP, which moved to Rice from the University of California, San Diego, three years ago to take advantage of collaborations with Texas Medical Center researchers – one of Rice’s Priorities for the New Century.

“This demonstrates a very interesting collaboration between TMC and Rice,” Ma said. “We’re very happy with that.” The paper’s co-authors are Rice graduate students Xingcheng Lin and Nathanial Eddy, and Paul Whitford, an assistant professor at Northeastern University in Boston. Onuchic is Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy and co-director of the CTBP based at Rice’s BioScience Research Collaborative.

Ma is a professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at Baylor. Wang is an assistant professor of biochemistry and molecular biology at Baylor. The National Science Foundation (NSF), the Welch Foundation, the National Institutes of Health, the Gillson-Longenbaugh Foundation and the Cancer Prevention Research Institute of Texas supported the research. The researchers utilized the Data Analysis and Visualization Cyberinfrastructure (DAVinCI) supercomputer supported by the NSF and the BlueBioU supercomputer, both administered by Rice’s Ken Kennedy Institute for Information Technology.

Jeff Falk | Eurek Alert!
Further information:
http://news.rice.edu/2014/07/31/researchers-uncover-clues-to-flus-mechanisms/

Further reports about: NSF Physics X-ray energy flu landscape mechanisms protein structures

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>