Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover clues to flu’s mechanisms

01.08.2014

Rice, Baylor scientists analyze how influenza-related proteins help infect cells

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.


The influenza hemagglutinin protein reconfigures itself as it targets host cells to infect them. Until new analysis by Rice University and Baylor College of Medicine researchers, nobody had been able to study the intermediate states of the protein-refolding process that may be vulnerable to treatment with drugs. (Credit: Jeffrey Noel/Rice University)

Their computer simulations may lead to new strategies to stop influenza, perhaps even a one-size-fits-all vaccine. The discovery detailed this week in the Proceedings of the National Academy of Sciences shows the path taken by hemagglutinin, a glycoprotein that rides the surface of the influenza virus, as it releases fusion peptides to invade a host cell.

The release mechanism has been the subject of many theories, but none have explained experimental observations as well as the new work led by biophysicist José Onuchic at Rice and biochemists Qinghua Wang at Baylor and Jianpeng Ma, who has a joint appointment at the two institutions. The Rice-Baylor team applied protein-folding algorithms developed by Onuchic and his colleagues to analyze how hemagglutinin reconfigures itself as it infects a cell.

... more about:
»NSF »Physics »X-ray »energy »flu »landscape »mechanisms »protein »structures

Hemagglutinin is completely folded at the start of the process of interest to researchers who study viral infection, Ma said. “It may be the only case known to human beings where a protein starts at a fixed point and literally completely refolds,” he said. Proteins are the molecular motors that spring from DNA and perform tasks essential to life, and they are the prime focus of study for Onuchic and his colleagues at Rice’s Center for Theoretical Biological Physics (CTBP). The researchers use their energy landscape theory to determine the path an unfolded strand of amino acids takes as it collapses into a final, functional protein.

That involves calculating the energetic preferences of every acid in the chain as well as the influence of the surrounding environment as folding progresses. When Ma met Onuchic a few years ago, he recognized an opportunity. “I told him there’s a very important feature of the viral system that would be ideal for his energy landscape approach.” Ma said. Researchers have long observed hemagglutinin’s initial and final structures through X-ray crystallography. But because the change happens so quickly, it has been impossible to capture an image of the glycoprotein in transit.

Ma said the key to stopping the flu could be to attack these intermediate structures. Energy landscape theory predicts how a protein will fold no matter how fast it happens. In the case of hemagglutinin, the unfolding and refolding happens in seconds. During the process, part of the protein “cracks” and releases fusion peptides. “The fusion peptides are the most important part of the molecule,” said Rice postdoctoral researcher and co-author Jeffrey Noel. “The hemagglutinin is attached to the viral membrane, and when these peptides are released, they embed themselves in the target cell’s membrane, creating a connection between the two.”

“The purpose of hemagglutinin is to poke a hole between the two membranes,” Ma said. “They have to fuse so the genetic material will be injected into the human cell.” Hemagglutinin is recognized by polysaccharide receptors on host cells and is absorbed when the cells engulf it. Initially, part of the protein forms a cap that protects the segments inside. Acidic conditions cause the cap to fall off, and the protein begins to reconfigure itself. “The release of the fusion peptide, which is initially hidden inside hemagglutinin, is triggered by that giant conformational change,” Ma said. “When the cap is on, the whole protein is stable,” Noel said.

“What we see in the simulation is that the hydrophobic pocket where the fusion peptides are buried is very unstable and wants to crack as soon as the cap comes off.” By using the experimental structural information from X-ray crystallography to approximate the full energy landscape of hemagglutinin, the researchers can now capture a rough picture of the steps involved in its reconfiguration, including the point at which the peptides are released. “We now, for the first time, have mapped out the entire process, going from state A to state B, and the energetics along the way,” Ma said.

Ma said frequent mutations to the cap help the virus avoid antibodies; this is the reason people need flu shots every year. But he suspects the inner part of the protein is more highly conserved. “We’re targeting the part that the virus cannot afford to change. Therefore, it provides more hope for developing therapeutic agents,” he said. Such agents could lead to a universal flu vaccine that would last a lifetime. He said the membrane fusion mechanism is widely shared among many biological systems, which makes influenza a good model for studying other diseases.

“HIV has one. Ebola has one. And it’s also shared by intercell transport in the nervous system,” Ma said. He noted the work could not have been done without CTBP, which moved to Rice from the University of California, San Diego, three years ago to take advantage of collaborations with Texas Medical Center researchers – one of Rice’s Priorities for the New Century.

“This demonstrates a very interesting collaboration between TMC and Rice,” Ma said. “We’re very happy with that.” The paper’s co-authors are Rice graduate students Xingcheng Lin and Nathanial Eddy, and Paul Whitford, an assistant professor at Northeastern University in Boston. Onuchic is Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy and co-director of the CTBP based at Rice’s BioScience Research Collaborative.

Ma is a professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at Baylor. Wang is an assistant professor of biochemistry and molecular biology at Baylor. The National Science Foundation (NSF), the Welch Foundation, the National Institutes of Health, the Gillson-Longenbaugh Foundation and the Cancer Prevention Research Institute of Texas supported the research. The researchers utilized the Data Analysis and Visualization Cyberinfrastructure (DAVinCI) supercomputer supported by the NSF and the BlueBioU supercomputer, both administered by Rice’s Ken Kennedy Institute for Information Technology.

Jeff Falk | Eurek Alert!
Further information:
http://news.rice.edu/2014/07/31/researchers-uncover-clues-to-flus-mechanisms/

Further reports about: NSF Physics X-ray energy flu landscape mechanisms protein structures

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>