Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover biochemical pathway by which harmful molecule may raise Alzheimer's risk

15.06.2010
A molecule implicated in Alzheimer's disease interferes with brain cells by making them unable to "recycle" the surface receptors that respond to incoming signals, researchers at UT Southwestern Medical Center have found.

The harmful molecule, called APOE4, is present in about one out of every six people, the researchers said. Those with the gene for APOE4 have up to 10 times the risk of developing Alzheimer's disease earlier in life than average.

The researchers discovered that APOE4 makes a nerve cell hold back the molecules that enables it to respond to other cells, thereby disabling a chemical process known to be important in learning. Their findings appear online this week in the Proceedings of the National Academy of Sciences.

"This is actually a fairly simple system," said Dr. Joachim Herz, director of the Center for Alzheimer's and Neurodegenerative Disease at UT Southwestern and senior author of the study. "For the first time, we see an uninterrupted biochemical pathway that links the surface of the brain cell to the dysfunction inside the cell, and specifically at the junction at which nerve cells communicate."

The research focused on a basic characteristic of nerve cells called neurotransmission, in which they use chemicals to signal each other. When one nerve cell needs to "talk" to another, its tip sends out a chemical called a neurotransmitter. The surface of the second cell is studded with molecules called receptors, which fit specific neurotransmitters like a lock and key. When a neurotransmitter docks onto its receptor, the second cell responds.

A cell can fine-tune its sensitivity by removing receptors from its surface. To do this, the cell engulfs the receptors to its interior, taking them out of action. It can eventually recycle them back to the surface, where they can respond to neurotransmitters again.

The researchers looked at receptors that respond to a neurotransmitter called glutamate, which is implicated in memory and learning. In mice that were genetically altered to make human APOE4, the researchers found that APOE4 prevented the cells from accomplishing a vital step in learning – becoming more sensitive to repeated signals.

The researchers also studied the mice's hippocampus – an area of the brain vital to learning – to see how it would respond to extracts from the brain of a human with Alzheimer's. The extract prevented both normal and genetically altered mice from processing incoming signals; however, the normal mice could recover from this suppression, while the mice with APOE4 could not.

Dr. Herz and his colleagues hypothesized that APOE4 exerted its effects by interacting with the receptors for a molecule called Reelin, which keeps brain cells more sensitive to each other. Both APOE4 and Reelin bind to the same receptor. When Reelin binds to it, the combination triggers a biochemical cascade that makes the glutamate receptor more sensitive to incoming signals.

The researchers showed that APOE4 prevents the Reelin-binding receptor from being recycled back to the surface. With fewer receptors, the nerve cell can't bind much Reelin, no matter how much is around. Without Reelin's effects, the cell doesn't respond as vigorously to glutamate, and doesn't "learn" as well.

Knowing how a biological system works doesn't automatically translate to clinical use, Dr. Herz cautioned. "Although these findings constitute a milestone in our understanding of how APOE4 becomes such a potent risk factor for Alzheimer's disease, potential drugs that might come from this finding would still require years of development," he said.

"The question is, now that we've apparently identified what's going on, can we do anything about this disease process at the fundamental molecular level? That's what we're working on right now," Dr. Herz said.

Other UT Southwestern researchers involved in the study were graduate student Ying Chen; Dr. Murat Durakoglugil, assistant instructor of molecular genetics; and Dr. Xunde Xian, postdoctoral researcher in molecular genetics.

The study was funded by the National Institutes of Health, the American Health Assistance Foundation, the Perot Family Foundation, the Consortium for Frontotemporal Dementia Research, SFB780 and the Humboldt Foundation.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in the neurosciences, including treatment of all types of neurovascular and neuromuscular disorders.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: brain cell health services molecular genetic nerve cell

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>