Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover biochemical pathway by which harmful molecule may raise Alzheimer's risk

15.06.2010
A molecule implicated in Alzheimer's disease interferes with brain cells by making them unable to "recycle" the surface receptors that respond to incoming signals, researchers at UT Southwestern Medical Center have found.

The harmful molecule, called APOE4, is present in about one out of every six people, the researchers said. Those with the gene for APOE4 have up to 10 times the risk of developing Alzheimer's disease earlier in life than average.

The researchers discovered that APOE4 makes a nerve cell hold back the molecules that enables it to respond to other cells, thereby disabling a chemical process known to be important in learning. Their findings appear online this week in the Proceedings of the National Academy of Sciences.

"This is actually a fairly simple system," said Dr. Joachim Herz, director of the Center for Alzheimer's and Neurodegenerative Disease at UT Southwestern and senior author of the study. "For the first time, we see an uninterrupted biochemical pathway that links the surface of the brain cell to the dysfunction inside the cell, and specifically at the junction at which nerve cells communicate."

The research focused on a basic characteristic of nerve cells called neurotransmission, in which they use chemicals to signal each other. When one nerve cell needs to "talk" to another, its tip sends out a chemical called a neurotransmitter. The surface of the second cell is studded with molecules called receptors, which fit specific neurotransmitters like a lock and key. When a neurotransmitter docks onto its receptor, the second cell responds.

A cell can fine-tune its sensitivity by removing receptors from its surface. To do this, the cell engulfs the receptors to its interior, taking them out of action. It can eventually recycle them back to the surface, where they can respond to neurotransmitters again.

The researchers looked at receptors that respond to a neurotransmitter called glutamate, which is implicated in memory and learning. In mice that were genetically altered to make human APOE4, the researchers found that APOE4 prevented the cells from accomplishing a vital step in learning – becoming more sensitive to repeated signals.

The researchers also studied the mice's hippocampus – an area of the brain vital to learning – to see how it would respond to extracts from the brain of a human with Alzheimer's. The extract prevented both normal and genetically altered mice from processing incoming signals; however, the normal mice could recover from this suppression, while the mice with APOE4 could not.

Dr. Herz and his colleagues hypothesized that APOE4 exerted its effects by interacting with the receptors for a molecule called Reelin, which keeps brain cells more sensitive to each other. Both APOE4 and Reelin bind to the same receptor. When Reelin binds to it, the combination triggers a biochemical cascade that makes the glutamate receptor more sensitive to incoming signals.

The researchers showed that APOE4 prevents the Reelin-binding receptor from being recycled back to the surface. With fewer receptors, the nerve cell can't bind much Reelin, no matter how much is around. Without Reelin's effects, the cell doesn't respond as vigorously to glutamate, and doesn't "learn" as well.

Knowing how a biological system works doesn't automatically translate to clinical use, Dr. Herz cautioned. "Although these findings constitute a milestone in our understanding of how APOE4 becomes such a potent risk factor for Alzheimer's disease, potential drugs that might come from this finding would still require years of development," he said.

"The question is, now that we've apparently identified what's going on, can we do anything about this disease process at the fundamental molecular level? That's what we're working on right now," Dr. Herz said.

Other UT Southwestern researchers involved in the study were graduate student Ying Chen; Dr. Murat Durakoglugil, assistant instructor of molecular genetics; and Dr. Xunde Xian, postdoctoral researcher in molecular genetics.

The study was funded by the National Institutes of Health, the American Health Assistance Foundation, the Perot Family Foundation, the Consortium for Frontotemporal Dementia Research, SFB780 and the Humboldt Foundation.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in the neurosciences, including treatment of all types of neurovascular and neuromuscular disorders.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: brain cell health services molecular genetic nerve cell

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>