Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Attack Mechanism of Illness-inducing Bacterium Found in Shellfish

19.08.2008
An infectious ocean-dwelling bacterium found in oysters and other shellfish kills its host’s cells by causing them to burst, providing the invader with a nutrient-rich meal, researchers at UT Southwestern Medical Center have found.

The bacterium, a relative of the one that causes cholera, co-opts and makes fatal a normal cell process that starving or stressed organisms use to disassemble and recycle expendable proteins into more vital metabolites.

Called Vibrio parahaemolyticus, or V para for short, the bacterium is already a major cause of human illness and economic loss in Asia. It is dangerous primarily to people with liver disease or suppressed immune systems, although it can be killed by fully cooking shellfish, according to the U.S. Centers for Disease Control and Prevention.

It caused major disease outbreaks in the northwest and northeast U.S. in the late 1990s and killed two people after Hurricane Katrina when tainted seawater entered open wounds, according to the CDC and the U.S. Food and Drug Administration.

“This pathogen has spread to all the oceans of the world, and is resistant to many antibiotics,” said Dr. Kim Orth, associate professor of molecular biology and senior author of a study appearing online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences.

Dr. Orth said she became interested in V para after its DNA was sequenced by Japanese researchers. She saw similarities between some of V para’s genes and those encoded by an unrelated bacterium that causes plague, which she also studies.

V para was already known to kill host cells but the molecular mechanisms were unclear, Dr. Orth said. However, the new study shows that V para physically contacts host cells and then injects molecules to trigger the protein breakdown process.

Normally, this protein breakdown mechanism, called autophagy (pronounced “aw-TAH-fah-gee”) or “self-eating,” is tightly controlled by the cells.

In the study, the researchers infected cultured human cells with V para and found that the cells very quickly showed signs of autophagy, such as forming distinctive small compartments that collect and transport proteins for disassembly.

The cells also became rounded, probably from a collapse of their internal framework, and their outer membranes began leaking, the researchers found. The cells died within three hours.

The researchers hypothesized that the invading V para scavenged nutrients from the dying cells to support their own proliferation.

“No one has seen such a rapid triggering of autophagy before,” said Dr. Orth.

“Treating the human cells with an autophagy inhibitor halted the protein breakdown process but did not save the cells, because V para uses other pathways by which to kill cells,” she said. “However, because it can kill by several routes, it’s important to understand all of them.”

In addition, because of rising ocean temperatures, the brackish conditions that favor V para growth extend farther north along the U.S. coasts.

“We’ve received a wake-up call that this is important environmentally, and we want to understand at the molecular level how this pathogen infects, kills and persists,” Dr. Orth said. “There are people getting sick from this emerging pathogen in the United States, yet there is no major effort to understand its pathology.

“There are many ways to kill a cell, and we’ve discovered yet another one. The bacterium hijacks activities from us and deregulates them. It’s like a bulldozer.”

Although less dangerous than cholera, V para causes similar symptoms: diarrhea, nausea, vomiting and fever. In general, people recover in about three days, needing only rest and fluids, according to the CDC. One of the fatalities from the Hurricane Katrina aftermath had human immunodeficiency virus; details on the other case were not available.

Other UT Southwestern researchers involved in the study were lead authors Dara Burdette and Melanie Yarbrough, graduate students in molecular microbiology; Anthony Orvedahl, a student in UT Southwestern’s Medical Scientist Training Program; and Dr. Christopher Gilpin, assistant professor of cell biology.

The work was supported by the National Institutes of Health, the Burroughs Wellcome Fund and The Welch Foundation.

Visit http://www.utsouthwestern.org/infectiousdiseases to learn more about clinical services at UT Southwestern in infectious diseases.

Dr. Kim Orth http://www.utsouthwestern.edu/findfac/professional/0,2356,52806,00.html

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.org/
http://www.utsouthwestern.org/infectiousdiseases
http://www.utsouthwestern.edu/findfac/professional/0,2356,52806,00.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>