Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover 'obesity gene' involved in weight gain response to high-fat diet

26.02.2009
Scientists have determined that a specific gene plays a role in the weight-gain response to a high-fat diet.

The finding in an animal study suggests that blocking this gene could one day be a therapeutic strategy to reduce diet-related obesity and associated disorders, such as diabetes and liver damage, in humans.

The researchers found that a diet rich in fat induced production of this gene, called protein kinase C beta (PKC beta), in the fat cells of mice. These mice rapidly gained weight while eating a high-fat diet for 12 weeks.

On the other hand, mice genetically engineered to lack PKC beta gained relatively little weight and showed minimal health effects after eating the same high-fat diet.

In comparing the effects of the high-fat diet and a regular diet, the scientists found that mice fed the high-fat diet produced more PKC beta in their fat tissue than did mice eating a regular diet.

“So we now know this gene is induced by a high-fat diet in fat cells, and a deficiency of this gene leads to resistance to fat-induced obesity and related insulin resistance and liver damage,” said Kamal Mehta, senior author of the study and a professor of molecular and cellular biochemistry in Ohio State University’s College of Medicine.

“It could be that the high-fat diet is a signal to the body to store more fat. And when that gene is not there, then the fat storage cannot occur.”

Though the complete mechanism remains unknown, the research to date suggests that rather than storing fat, mice lacking the gene burn fat more rapidly than they would if the PKC beta were present, Mehta said.

The research is available online in the journal Hepatology and is scheduled for later print publication.

Mehta and colleagues previously had created the hybrid mouse model by cross-breeding mice deficient in PKC beta with the C57 black mouse, a common animal used in research for studying diabetes and obesity. Despite the propensity for obesity from their original genes, the new mice lost weight while eating up to 30 percent more food than other mice.

In the earlier study, the mice ate a regular diet. In this new study, the researchers fed PKC beta-deficient and normal mice either a diet in which 60 percent of calories were derived from fat – the high-fat diet – or a standard diet in which 15 percent of calories came from fat. In the typical American diet, about 40 percent of calories are derived from fat.

The normal mice on the high-fat diet showed weight gain within three weeks, a trend that continued throughout the 12-week study. The PKC beta-deficient mice on the same diet gained less weight even while appearing to be extra hungry and eating more calories than the normal mice – meaning their lower body weight was not the result of eating less.

Of animals eating the high-fat diet, the fat tissue and livers in the normal mice were larger than those in the PKC beta-deficient mice, as well. The livers of the normal mice were on average about 50 percent larger than the livers in mice lacking the gene. And the white fat tissue – the tissue in which PKC beta was expressed as a result of the high-fat diet – was almost three times as heavy in the normal mice as in the PKC beta-deficient mice.

The protein-deficient mice were able to clear insulin to regulate blood sugar more rapidly than normal mice after eating the high-fat diet, meaning avoiding obesity also allowed them to avoid development of insulin resistance associated with diabetes, said Mehta, also an investigator in Ohio State’s Davis Heart and Lung Research Institute.

“Obesity leads to liver damage and to diabetes. So if we can take care of obesity associated with a high-fat diet, we can also take care of most of the related disorders,” Mehta said.

A separate component of the current study further showed that mice engineered to be obese also had about 500 percent more of the gene in their fat cells than did normal mice. Mehta and colleagues have assembled a team that includes an endocrinologist, bariatric surgeon and molecular biologist to examine human fat tissue from obese and lean patients to see if levels of PKC beta are elevated in obese humans, as well.

“It is very likely that this gene may be involved in a predisposition to obesity,” he said.

Knowing the gene is responsive in the fat cells is important to figuring out how to suppress its action. Future research will involve deleting the gene from fat cells in mice to see if these new mice have the same lean body type as mice that are completely deficient of PKC beta throughout their entire genome.

“We are generating more mouse models to vary expression of this gene and study the consequences of that on obesity and related disorders,” Mehta said.

So far, mouse models lacking the protein have not shown any damaging side effects related to the suppression of the gene, Mehta said. He speculates that PKC beta could be a so-called “thrifty” gene left over from humans’ days as hunter-gatherers, when the body needed to retain fat for survival.

This work is supported by the National Institutes of Health.

Co-authors on the paper were Wei Huang and Rishipal Bansode of the Department of Molecular and Cellular Biochemistry, and Madhu Mehta of the Department of Internal Medicine, all at Ohio State.

Contact: Kamal Mehta, (614) 688-8451; Mehta.80@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Emily Caldwell | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>