Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover 'obesity gene' involved in weight gain response to high-fat diet

26.02.2009
Scientists have determined that a specific gene plays a role in the weight-gain response to a high-fat diet.

The finding in an animal study suggests that blocking this gene could one day be a therapeutic strategy to reduce diet-related obesity and associated disorders, such as diabetes and liver damage, in humans.

The researchers found that a diet rich in fat induced production of this gene, called protein kinase C beta (PKC beta), in the fat cells of mice. These mice rapidly gained weight while eating a high-fat diet for 12 weeks.

On the other hand, mice genetically engineered to lack PKC beta gained relatively little weight and showed minimal health effects after eating the same high-fat diet.

In comparing the effects of the high-fat diet and a regular diet, the scientists found that mice fed the high-fat diet produced more PKC beta in their fat tissue than did mice eating a regular diet.

“So we now know this gene is induced by a high-fat diet in fat cells, and a deficiency of this gene leads to resistance to fat-induced obesity and related insulin resistance and liver damage,” said Kamal Mehta, senior author of the study and a professor of molecular and cellular biochemistry in Ohio State University’s College of Medicine.

“It could be that the high-fat diet is a signal to the body to store more fat. And when that gene is not there, then the fat storage cannot occur.”

Though the complete mechanism remains unknown, the research to date suggests that rather than storing fat, mice lacking the gene burn fat more rapidly than they would if the PKC beta were present, Mehta said.

The research is available online in the journal Hepatology and is scheduled for later print publication.

Mehta and colleagues previously had created the hybrid mouse model by cross-breeding mice deficient in PKC beta with the C57 black mouse, a common animal used in research for studying diabetes and obesity. Despite the propensity for obesity from their original genes, the new mice lost weight while eating up to 30 percent more food than other mice.

In the earlier study, the mice ate a regular diet. In this new study, the researchers fed PKC beta-deficient and normal mice either a diet in which 60 percent of calories were derived from fat – the high-fat diet – or a standard diet in which 15 percent of calories came from fat. In the typical American diet, about 40 percent of calories are derived from fat.

The normal mice on the high-fat diet showed weight gain within three weeks, a trend that continued throughout the 12-week study. The PKC beta-deficient mice on the same diet gained less weight even while appearing to be extra hungry and eating more calories than the normal mice – meaning their lower body weight was not the result of eating less.

Of animals eating the high-fat diet, the fat tissue and livers in the normal mice were larger than those in the PKC beta-deficient mice, as well. The livers of the normal mice were on average about 50 percent larger than the livers in mice lacking the gene. And the white fat tissue – the tissue in which PKC beta was expressed as a result of the high-fat diet – was almost three times as heavy in the normal mice as in the PKC beta-deficient mice.

The protein-deficient mice were able to clear insulin to regulate blood sugar more rapidly than normal mice after eating the high-fat diet, meaning avoiding obesity also allowed them to avoid development of insulin resistance associated with diabetes, said Mehta, also an investigator in Ohio State’s Davis Heart and Lung Research Institute.

“Obesity leads to liver damage and to diabetes. So if we can take care of obesity associated with a high-fat diet, we can also take care of most of the related disorders,” Mehta said.

A separate component of the current study further showed that mice engineered to be obese also had about 500 percent more of the gene in their fat cells than did normal mice. Mehta and colleagues have assembled a team that includes an endocrinologist, bariatric surgeon and molecular biologist to examine human fat tissue from obese and lean patients to see if levels of PKC beta are elevated in obese humans, as well.

“It is very likely that this gene may be involved in a predisposition to obesity,” he said.

Knowing the gene is responsive in the fat cells is important to figuring out how to suppress its action. Future research will involve deleting the gene from fat cells in mice to see if these new mice have the same lean body type as mice that are completely deficient of PKC beta throughout their entire genome.

“We are generating more mouse models to vary expression of this gene and study the consequences of that on obesity and related disorders,” Mehta said.

So far, mouse models lacking the protein have not shown any damaging side effects related to the suppression of the gene, Mehta said. He speculates that PKC beta could be a so-called “thrifty” gene left over from humans’ days as hunter-gatherers, when the body needed to retain fat for survival.

This work is supported by the National Institutes of Health.

Co-authors on the paper were Wei Huang and Rishipal Bansode of the Department of Molecular and Cellular Biochemistry, and Madhu Mehta of the Department of Internal Medicine, all at Ohio State.

Contact: Kamal Mehta, (614) 688-8451; Mehta.80@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Emily Caldwell | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>