Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn one form of neuron into another in the brain

21.01.2013
Opening a new avenue in neurobiology

A new finding by Harvard stem cell biologists turns one of the basics of neurobiology on its head – demonstrating that it is possible to turn one type of already differentiated neuron into another within the brain.

The discovery by Paola Arlotta and Caroline Rouaux "tells you that maybe the brain is not as immutable as we always thought, because at least during an early window of time one can reprogram the identity of one neuronal class into another," said Arlotta, an Associate Professor in Harvard's Department of Stem Cell and Regenerative Biology (SCRB).

The principle of direct lineage reprogramming of differentiated cells within the body was first proven by SCRB co-chair and Harvard Stem Cell Institute (HSCI) co-director Doug Melton and colleagues five years ago, when they reprogrammed exocrine pancreatic cells directly into insulin producing beta cells.

Arlotta and Rouaux now have proven that neurons too can change their mind. The work is being published on-line today (Jan. 20) by the journal Nature Cell Biology.

In their experiments, Arlotta targeted callosal projection neurons, which connect the two hemispheres of the brain, and turned them into neurons similar to corticospinal motor neurons, one of two populations of neurons destroyed in Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease. To achieve such reprogramming of neuronal identity, the researchers used a transcription factor called Fezf2, which long as been known for playing a central role in the development of corticospinal neurons in the embryo.

What makes the finding even more significant is that the work was done in the brains of living mice, rather than in collections of cells in laboratory dishes. The mice were young, so researchers still do not know if neuronal reprogramming will be possible in older laboratory animals – and humans. If it is possible, this has enormous implications for the treatment of neurodegenerative diseases.

"Neurodegenerative diseases typically effect a specific population of neurons, leaving many others untouched. For example, in ALS it is corticospinal motor neurons in the brain and motor neurons in the spinal cord, among the many neurons of the nervous system, that selectively die," Arlotta said. "What if one could take neurons that are spared in a given disease and turn them directly into the neurons that die off? In ALS, if you could generate even a small percentage of corticospinal motor neurons, it would likely be sufficient to recover basic functioning," she said.

The experiments that led to the new finding began five years ago, when "we wondered: in nature you never seen a neuron change identity; are we just not seeing it, or is this the reality? Can we take one type of neuron and turn it into another?" Arlotta and Rouaux asked themselves.

Over the course of the five years, the researchers analyzed "thousands and thousands of neurons, looking for many molecular markers as well as new connectivity that would indicate that reprogramming was occurring," Arlotta said. "We could have had this two years ago, but while this was a conceptually very simple set of experiments, it was technically difficult. The work was meant to test important dogmas on the irreversible nature of neurons in vivo. We had to prove, without a shadow of a doubt, that this was happening."

The work in Arlotta's lab is focused on the cerebral cortex, but "it opens the door to reprogramming in other areas of the central nervous system," she said.

Arlotta, an HSCI principal faculty member, is now working with colleague Takao Hensch, of Harvard's Department of Molecular and Cellular Biology, to explicate the physiology of the reprogrammed neurons, and learn how they communicate within pre-existing neuronal networks.

"My hope is that this will facilitate work in a new field of neurobiology that explores the boundaries and power of neuronal reprogramming to re-engineer circuits relevant to disease," said Paola Arlotta.

This work was financed by a seed grant from the Harvard Stem Cell Institute, and by support from the National Institutes of Health, and the Spastic Parapelgia Foundation.

Paola Arlotta | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>