Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at TUAS Wildau Find Candidate Gene Culprits for Chronic Pain

07.05.2010
New insights by TH Wildau researchers and collaborators are reporting that chronic pain may be caused by the inadvertent reprogramming of more than 2,000 genes in the peripheral nervous system. The researchers speculate this research might ultimately lead to a therapy employing drugs that kill pain by correcting the activity of specific genes. The research was focused on the peripheral nervous system in rodent models.

According to DGSS, a section of the International Association for the Study of Pain, chronic pain affects 17% of all Germans and costs 25 billion Euro's per year in heath care alone. The quality of life of patients suffering from chronic pain can be severely limited. The pain can appear without an apparent cause and available treatments often fail to relieve it efficiently.

At the department of bioinformatics and competence center "Life Science Computing" at TH Wildau under the lead of Prof. Dr. Peter Beyerlein, powerful algorithms were developed to sort through 10.48 billion RNA sequences, assembling the complicated genomic puzzle. Researchers at Mayo Clinic carried out the wet lab experiments generating the needed mRNA molecules, which where then sequenced with Illumina's high-throughput sequencing technology, before they were transferred to Wildau. The Wildau computing results revealed a number of surprises, among them more than 10.465 novel exons and 421 novel genes.

"We were able to look much deeper into the universe of cellular processes, than ever before. It is fascinating how precisely a rigid mathematical reasoning, as consistently taught to our students, can help unveil the internal life of cells ," says Peter Beyerlein, who teaches computer science and bioinformatics in the Biosystems Engineering / Bioinformatics study course at TH Wildau.

The transatlantic team lead by the two Germans, Andreas Beutler, M.D (Mayo clinics Rochester) and Peter Beyerlein (TH Wildau) consisted of: Ronny Amberg, Paul Hammer and Gabriele Petznick all of TH Wildau, Germany;. and Michaela Banck, M.D., of Mayo Clinic; Cheng Wang, M.D., Mount Sinai School of Medicine; and Shujun Luo, Ph.D., Irina Khrebtukova, Ph.D., and Gary P. Schroth, Ph.D. all of Illumina Inc., Hayward, Calif.

The study was supported by the Richard M. Schulze Family Foundation and the National Institute of Neurological Disorders and Stroke as well as the Ministry of Science, Research and Culture (MWFK, State Brandenburg, Germany) and Philips Research, Netherlands.

Technical Contact:
Prof. Dr. rer. nat. Peter Beyerlein
E-mail: peter.beyerlein@googlemail.com
Tel. +49 3375 508 948

Bernd Schlütter | idw
Further information:
http://www.th-wildau.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>