Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use sugar to halt esophageal cancer in its tracks

16.01.2012
Scientists working at the Medical Research Council have identified changes in the patterns of sugar molecules that line pre-cancerous cells in the esophagus, a condition called Barrett's dysplasia, making it much easier to detect and remove these cells before they develop into esophageal cancer.

These findings, reported in the journal Nature Medicine, have important implications for patients and may help to monitor their condition and prevent the development of cancer.

Oesophageal cancer is the fifth biggest cause of cancer death in the United Kingdom and the eighth leading cause of cancer deaths for men in the United States. Moreover, the number of people diagnosed with this disease is increasing rapidly. Individuals with a pre-cancerous condition known as Barrett's oesophagus are at an increased risk of developing esophageal cancer, and need to be closely monitored to make sure that the disease is not progressing.

Dysplasia offers a stage at which cancer can be prevented by removing these cells. However correctly identifying these areas has proved to be problematic, as they can easily be missed during endoscopy and biopsy, which only take samples from a small part of the esophagus. This can result in false reassurance for patients in whom their dysplasia has been missed, and conversely those without dysplasia having to undergo further unnecessary treatments.

The team, based at the MRC Cancer Cell Unit in Cambridge, was led by Dr. Rebecca Fitzgerald and included New York University's Lara Mahal, an associate professor of chemistry, and William Eng, a laboratory technician.

The researchers discovered a new mechanism for identifying Barrett's dysplasia cells by spraying on a fluorescent probe that sticks to sugars and lights up any abnormal areas during endoscopy. By analyzing the sugars present in human tissue samples taken from different stages on the pathway to cancer—using microarray technology developed by NYU's Mahal—they found that there were different sugar molecules present on the surface of the pre-cancerous cells. This technology uses sugar binding proteins, known as lectins, to identify changes in sugars and pinpointed carbohydrate binding wheat germ proteins as a potential diagnostic. When the wheat germ proteins, attached to a fluorescent tag that glows under a specific type of light, were sprayed onto tissue samples, it showed decreased binding in areas of dysplasia, and these cells were clearly marked compared with the glowing green background.

"The rise in cases of oesophageal cancer both in the UK and throughout the Western world means that it is increasingly important to find ways of detecting it as early as possible," Fitzgerald said. "Our work has many potential benefits for those with Barrett's esophagus who have an increased risk of developing esophageal cancer."

"We have demonstrated that binding of a wheat germ protein, which is cheap and non-toxic, can identify differences in surface sugars on pre-cancerous cells," she added. "And when coupled with fluorescence imaging using an endoscopic camera, this technique offers a promising new way of finding and then treating patients with the highest risk of developing esophageal cancer, at the earliest stage."

Editor's Note:

For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. http://www.mrc.ac.uk

New York University, located in the heart of Greenwich Village, was established in 1831 and is one of America's leading research universities. It is one of the largest private universities, it has one of the largest contingents of international students, and it sends more students to study abroad than any other college or university in the U.S. Through its 18 schools and colleges, NYU conducts research and provides education in the arts and sciences, law, medicine, business, dentistry, education, nursing, the cinematic and dramatic arts, music, public administration, social work, and continuing and professional studies, among other areas.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>