Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study aging's effect on the brain

11.10.2011
Research by biologists at the University of York and Hull York Medical School has revealed important new information about the way the brain is affected by age.

Working with scientists at the Peninsula College of Medicine and Dentistry in Plymouth, they have studied responses to stress in synapses -- neuronal connections.

The researchers discovered that under stressful conditions, such as neuro-degeneration, resulting high energy forms of damaging oxygen cause synapses to grow excessively, potentially contributing to dysfunction.

Such stresses occur during neurodegenerative disease such as Alzheimer's and Parkinson's Disease.

The research, which was funded by the Medical Research Council and the Biotechnology and Biological Sciences Research Council, is published in the latest issue of the Proceedings of the National Academy of Sciences (PNAS).

Laboratory modelling was carried out using Drosophila, but similar pathways are present in humans. The scientists studied the responses using a model of lysosomal storage disease, an inherited incurable childhood neurodegeneration where enlarged synapses have been observed, but the role that growth has in disease progression and brain function is not yet clear.

Co-author Dr Sean Sweeney, of the Department of Biology at the University of York, said: "The findings have strong implications for neuronal function as brains age, and will add significantly to our understanding of neurodegenerative disease such as Alzheimer's and Parkinson's disease."

Co-author Dr Iain Robinson, of the Peninsula College of Medicine and Dentistry, added: "Neuronal contacts in the brain are constantly changing. These changes in the brain enable us to form short term memories such as where we parked the car, or longer term memories, such as what is our pin number for the cash point machine. Our work sheds light on how our brain becomes less able to make these changes in neuronal contacts as we age and helps explain the loss of neuronal contacts seen in several neurodegenerative diseases."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>