Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers spot molecular control switch for preterm lung disorders

21.03.2013
Researchers at Yale School of Medicine have made major discoveries that could lead to new treatments for lung disorders in premature babies.

In a mouse study, the team located key molecules that switch on stress pathways in preterm lung disorders, and also found that when parts of these pathways were blocked with a pain drug, lung damage was prevented or reversed.

The findings are published online ahead of print in the March issue of American Journal of Respiratory Cell and Molecular Biology.

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in premature infants and does not have any specific treatment. The disorder affects about 97% of infants with birth weights below 1,250 grams, and can lead to repeated respiratory tract infections, as well as to emphysema and chronic obstructive pulmonary disease in adulthood.

A research team led by Vineet Bhandari, M.D., associate professor of pediatric neonatology and obstetrics, gynecology & reproductive sciences at Yale School of Medicine, theorized that if the molecules that cause these disorders can be blocked early on, they could essentially prevent lifelong lung problems.

Bhandari and his team studied the lung tissue of newborn mice. The team noted that when this lung tissue was exposed to hyperoxia —excess oxygen in tissues and organs that activates all components of the stress pathways in the newborn lung— there was a marked increase of cyclooxygenase 2 (Cox2) in the lung's stress pathways. This action resulted in BPD in mice. Once the team used a drug that inhibits Cox2, they were able to reverse BPD in mice.

"This is the first time hyperoxia has been comprehensively shown to be responsible for activating the stress pathway in developing lungs," said Bhandari. "Hyperoxia can induce interferon gamma and disrupt lung development, leading to BPD in mice. Once we used the Cox2 inhibitor Celecoxib, we were able to reverse the effects in the mouse BPD models. The drug, originally indicated to treat pain, protected the lungs from cell death, and was able to prevent destruction of and damage to the developing lung exposed to hyperoxia or excess interferon gamma in room air."

Bandari added that the findings suggest that Cox2 and or CHOP — a molecule important in the stress pathway — are potential new drug targets that can be inhibited to treat or prevent human BPD.

Bhandari said the next step is to conduct pre-clinical studies.

Other authors on the study include Rayman Choo-Wing; Mansoor A. Syed; Anantha Harijith, M.D.; Brianne Bowen; Gloria Pryhuber; M.D.; Cecilia Janér, M.D.; Sture Andersson, M.D.; and Robert J. Homer, M.D.

Citation: Am. J. Respir. Cell. Mol. Biol. doi:10.1165/rcmb.2012-0381OC (March 2013)

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: COX2 Medicine birth weight cell death interferon gamma key molecule lung tissue

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>