Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Solve Another Mystery in B Lymphocyte Development

25.05.2009
A new study published online in Nature Immunology ahead of the June 2009 print issue has found that homologous immunoglobulin (lg) alleles pair up in the nucleus at stages that coincide with V(D)J recombination of the heavy and light chain (Igh and Igk) loci.

Researchers led by Jane A. Skok Ph.D., assistant professor in the Department of Pathology at NYU School of Medicine and a member of the NYU Cancer Institute, showed that the V(D)J recombinase, which consists of the RAG1 and RAG2 proteins, mediates this pairing and helps ensure that only one allele undergoes recombination at a time (a process known as allelic exclusion).

In “RAG-1 and ATM Coordinate Monoallelic Recombination and Nuclear Positioning of Immunoglobulin Loci,” researchers found that RAG-mediated cleavage occurs on one allele at a time at every stage of Igh and Igk recombination; introduction of a double-strand break on one lg allele induces repositioning of its homologous partner to pericentromeric heterochromatin (a repressive compartment of the nucleus). This repositioning, surprisingly enough, depends on the DNA damage sensing factor ATM. It appears that cleavage activates ATM to act in trans on the uncleaved allele to reposition it in a repressive compartment of the nucleus, thereby preventing simultaneous recombination on both alleles and thus reducing the chance of translocations.

“This work deepens our understanding of the mechanisms that are in place for preventing translocations during V(D)J recombination that might ultimately lead to leukemias and lymphomas,” says Skok. “It also helps us understand why individuals with a genetic deficiency in ATM suffer more cancers arising from such translocations.”

Leukemias and lymphomas are very common cancers, especially in children. Chromosomal translocations involving the antigen receptor loci are a common underlying mechanism.

“V(D)J recombination plays a crucial role in the development of the immune system,” says Skok. “But because it entails the repeated cutting and joining of DNA gene segments, it carries a risk of translocation.”

Skok says that given the deleterious consequences, it is essential that B and T cells tightly regulate the recombinase, the accessibility of substrates for RAG cleavage, and the activities of the DNA damage response and repair machineries. Skok and researchers propose that homologous pairing of alleles undergoing recombination has a number of functions: (i) To protect genomic stability by ensuring that broken ends are aligned with homologous alleles rather than in contact with other loci. (ii) To provide a means for repair proteins recruited to sites of DSBs to act in trans on the uncleaved allele to prevent simultaneous cleavage on the latter. (iii) To ensure sequential recombination of individual alleles to help maintain allelic exclusion. In this sense homologous pairing of Ig alleles is analogous to pairing of X chromosomes which has an important role in X inactivation in developing female cells. The data suggest that in parallel with X inactivation, homologous pairing of Ig loci contributes to allelic exclusion by ensuring that only one allele is targeted for recombination at any time.

Dorie Klissas | Newswise Science News
Further information:
http://www.med.nyu.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>