Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Solve Another Mystery in B Lymphocyte Development

25.05.2009
A new study published online in Nature Immunology ahead of the June 2009 print issue has found that homologous immunoglobulin (lg) alleles pair up in the nucleus at stages that coincide with V(D)J recombination of the heavy and light chain (Igh and Igk) loci.

Researchers led by Jane A. Skok Ph.D., assistant professor in the Department of Pathology at NYU School of Medicine and a member of the NYU Cancer Institute, showed that the V(D)J recombinase, which consists of the RAG1 and RAG2 proteins, mediates this pairing and helps ensure that only one allele undergoes recombination at a time (a process known as allelic exclusion).

In “RAG-1 and ATM Coordinate Monoallelic Recombination and Nuclear Positioning of Immunoglobulin Loci,” researchers found that RAG-mediated cleavage occurs on one allele at a time at every stage of Igh and Igk recombination; introduction of a double-strand break on one lg allele induces repositioning of its homologous partner to pericentromeric heterochromatin (a repressive compartment of the nucleus). This repositioning, surprisingly enough, depends on the DNA damage sensing factor ATM. It appears that cleavage activates ATM to act in trans on the uncleaved allele to reposition it in a repressive compartment of the nucleus, thereby preventing simultaneous recombination on both alleles and thus reducing the chance of translocations.

“This work deepens our understanding of the mechanisms that are in place for preventing translocations during V(D)J recombination that might ultimately lead to leukemias and lymphomas,” says Skok. “It also helps us understand why individuals with a genetic deficiency in ATM suffer more cancers arising from such translocations.”

Leukemias and lymphomas are very common cancers, especially in children. Chromosomal translocations involving the antigen receptor loci are a common underlying mechanism.

“V(D)J recombination plays a crucial role in the development of the immune system,” says Skok. “But because it entails the repeated cutting and joining of DNA gene segments, it carries a risk of translocation.”

Skok says that given the deleterious consequences, it is essential that B and T cells tightly regulate the recombinase, the accessibility of substrates for RAG cleavage, and the activities of the DNA damage response and repair machineries. Skok and researchers propose that homologous pairing of alleles undergoing recombination has a number of functions: (i) To protect genomic stability by ensuring that broken ends are aligned with homologous alleles rather than in contact with other loci. (ii) To provide a means for repair proteins recruited to sites of DSBs to act in trans on the uncleaved allele to prevent simultaneous cleavage on the latter. (iii) To ensure sequential recombination of individual alleles to help maintain allelic exclusion. In this sense homologous pairing of Ig alleles is analogous to pairing of X chromosomes which has an important role in X inactivation in developing female cells. The data suggest that in parallel with X inactivation, homologous pairing of Ig loci contributes to allelic exclusion by ensuring that only one allele is targeted for recombination at any time.

Dorie Klissas | Newswise Science News
Further information:
http://www.med.nyu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>