Researchers Solve Another Mystery in B Lymphocyte Development

Researchers led by Jane A. Skok Ph.D., assistant professor in the Department of Pathology at NYU School of Medicine and a member of the NYU Cancer Institute, showed that the V(D)J recombinase, which consists of the RAG1 and RAG2 proteins, mediates this pairing and helps ensure that only one allele undergoes recombination at a time (a process known as allelic exclusion).

In “RAG-1 and ATM Coordinate Monoallelic Recombination and Nuclear Positioning of Immunoglobulin Loci,” researchers found that RAG-mediated cleavage occurs on one allele at a time at every stage of Igh and Igk recombination; introduction of a double-strand break on one lg allele induces repositioning of its homologous partner to pericentromeric heterochromatin (a repressive compartment of the nucleus). This repositioning, surprisingly enough, depends on the DNA damage sensing factor ATM. It appears that cleavage activates ATM to act in trans on the uncleaved allele to reposition it in a repressive compartment of the nucleus, thereby preventing simultaneous recombination on both alleles and thus reducing the chance of translocations.

“This work deepens our understanding of the mechanisms that are in place for preventing translocations during V(D)J recombination that might ultimately lead to leukemias and lymphomas,” says Skok. “It also helps us understand why individuals with a genetic deficiency in ATM suffer more cancers arising from such translocations.”

Leukemias and lymphomas are very common cancers, especially in children. Chromosomal translocations involving the antigen receptor loci are a common underlying mechanism.

“V(D)J recombination plays a crucial role in the development of the immune system,” says Skok. “But because it entails the repeated cutting and joining of DNA gene segments, it carries a risk of translocation.”

Skok says that given the deleterious consequences, it is essential that B and T cells tightly regulate the recombinase, the accessibility of substrates for RAG cleavage, and the activities of the DNA damage response and repair machineries. Skok and researchers propose that homologous pairing of alleles undergoing recombination has a number of functions: (i) To protect genomic stability by ensuring that broken ends are aligned with homologous alleles rather than in contact with other loci. (ii) To provide a means for repair proteins recruited to sites of DSBs to act in trans on the uncleaved allele to prevent simultaneous cleavage on the latter. (iii) To ensure sequential recombination of individual alleles to help maintain allelic exclusion. In this sense homologous pairing of Ig alleles is analogous to pairing of X chromosomes which has an important role in X inactivation in developing female cells. The data suggest that in parallel with X inactivation, homologous pairing of Ig loci contributes to allelic exclusion by ensuring that only one allele is targeted for recombination at any time.

Media Contact

Dorie Klissas Newswise Science News

More Information:

http://www.med.nyu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors