Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers solve 'bloodcurdling' mystery

08.06.2009
Team uncovers the molecular basis for the regulation of blood clotting

By applying cutting-edge techniques in single-molecule manipulation, researchers at Harvard University have uncovered a fundamental feedback mechanism that the body uses to regulate the clotting of blood.

The finding, which could lead to a new physical, quantitative, and predictive model of how the body works to respond to injury, has implications for the treatment of bleeding disorders.

A team, co-led by Timothy A. Springer, Latham Family Professor of Pathology at Harvard Medical School and Children's Hospital Boston, and Wesley P. Wong, Rowland Junior Fellow and a Principal Investigator at the Rowland Institute at Harvard, reported its discovery about the molecular basis for the feedback loop responsible for hemostasis in the June 5th issue of Science.

"The human body has an incredible ability to heal from life's scrapes and bruises," explains Wong. "A central aspect of this response to damage is the ability to bring bleeding to end, a process known as hemostasis. Yet regulating hemostasis is a complex balancing act."

Too much hemostatic activity can lead to an excess of blood clots, resulting in a potentially deadly condition known as thrombosis. If too little hemostatic activity occurs in the body, a person may bleed to death.

To achieve the proper balance, the body relies on a largely mechanical feedback system that relies on the miniscule forces applied by the circulation system on a molecular "force sensor" known as the A2 domain of the blood clotting protein von Willebrand factor (VWF).

By manipulating single molecules of this A2 domain, the researchers found that the A2 domain acts as a highly sensitive force sensor, responding to very weak tensile forces by unfolding, and losing much of its complex three-dimensional organization. This unfolding event allows the cutting of the molecule by an enzyme known as ADAMTS13.

"In the body, these cutting events decrease hemostatic potential and also enable blood clots to be trimmed in size. The system is so finely tuned that the A2 shear sensor is able to regulate the size of VWF within the blood stream, maintaining the optimal size for responding properly to traumas," says Wong.

To make the discovery, the team relied upon an "optical tweezers" system developed in Wong's lab. The tweezers are capable of applying miniscule forces to individual molecules while observing nanoscale changes in their length. Such manipulations enabled the researchers to characterize both the unfolding and refolding rates of single A2 molecules under force, as well as their interaction with the enzyme.

The molecular construct was created in Dr. Springer's lab, and consisted of an A2 domain connected to two DNA handles for manipulation. This elegant molecular system allowed the VWF "shear sensor" to be carefully studied and tested in isolation.

Ultimately, this work enhances the understanding of how the body is able to regulate the formation of blood clots, and is step towards a physical, quantitative, and predictive model of how the body responds to injury. It also gives insight into how bleeding disorders, such as type 2A von Willebrand disease, disrupt this regulation system, potentially leading to new avenues for treatment and diagnosis.

Wong and Springer's co-authors include Xiaohui Zhang, Kenneth Halvorsen, and Cheng-Zhong Zhang. The authors acknowledge the support of the National Institutes of Health, the American Heart Association, and the Rowland Junior Fellows program.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>