Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Show How New Viruses Evolve, and in Some Cases, Become Deadly

27.01.2012
View a video with Michigan State University researchers who showed how a new virus evolved potentially dangerous traits.

Researchers at Michigan State University (MSU) have demonstrated how a new virus evolves, shedding light on how easy it can be for diseases to gain dangerous mutations. The findings appear in the current issue of the journal Science.

The scientists showed for the first time how the virus called "Lambda" evolved to find a new way to attack host cells, an innovation that took four mutations to accomplish. This virus infects bacteria, in particular the common E. coli bacterium. Lambda isn't dangerous to humans, but this research demonstrated how viruses evolve complex and potentially deadly new traits, noted Justin Meyer, MSU graduate student, who co-authored the paper with Richard Lenski, MSU Hannah Distinguished Professor of Microbiology and Molecular Genetics.

"We were surprised at first to see Lambda evolve this new function, this ability to attack and enter the cell through a new receptor--and it happened so fast," Meyer said. "But when we re-ran the evolution experiment, we saw the same thing happen over and over."

... more about:
»Gates Foundation »MSU »NSF »bird flu »viruses

This paper follows recent news that scientists in the United States and the Netherlands produced a deadly version of bird flu. Even though bird flu is a mere five mutations away from becoming transmissible between humans, it's highly unlikely the virus could naturally obtain all of the beneficial mutations at once. However, it might evolve sequentially, gaining benefits one-by-one, if conditions are favorable at each step, Meyer added.

Through research conducted at BEACON, MSU's National Science Foundation Center for the Study of Evolution in Action, Meyer and his colleagues' ability to duplicate the results implied that adaptation by natural selection, or survival of the fittest, had an important role in the virus' evolution.

Read the full MSU news release here.

Funding for the research was provided in part by NSF and MSU AgBioResearch.

Media Contacts
Layne Cameron, University Relations, Michigan State University (517) 353-8819 layne.cameron@ur.msu.edu
Principal Investigators
Justin Meyer, BEACON Office, Michigan State University (517) 884-2561 meyerju3@msu.edu
Related Websites
BEACON: http://beacon-center.org/
Michigan State University news release: http://news.msu.edu/story/10262/
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Layne Cameron | EurekAlert!
Further information:
http://www.nsf.gov
http://www.msu.edu

Further reports about: Gates Foundation MSU NSF bird flu viruses

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>